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Abstract. Due to the large scale and high dimension of teaching data, the using of traditional clustering algo-
rithms has problems such as high computational complexity and low accuracy. Therefore, this paper proposes a
weighted block sparse subspace clustering algorithm based on information entropy. The introduction of infor-
mation entropy weight and block diagonal constraints can obtain the prior probability that two pixels belong to
the same category before the simulation experiment, thereby positively intervening that the solutions solved by
the model tend to be the optimal approximate solutions of the block diagonal structure. It can enable the model
to obtain the performance against noise and outliers, and thereby improving the discriminative ability of the
model classification. The experimental results show that the average probability Rand index of the proposed
method is 0.86, which is higher than that of other algorithms. The average information change index of the
proposed method is 1.55, which is lower than that of other algorithms, proving its strong robustness. On dif-
ferent datasets, the misclassification rates of the design method are 1.2% and 0.9% respectively, which proves
that its classification accuracy is relatively high. The proposed method has high reliability in processing high-
dimensional teaching data. It can play an important role in the field of educational data analysis and provide
strong support for intelligent teaching.
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1. Introduction

In high-dimensional clustering algorithms, if the data is distributed in the union of linear or affine subspaces, the
subspace clustering algorithm is an effective way to achieve high-dimensional data clustering [1]. The subspace
clustering algorithm assigns points in the same subspace to the corresponding subspace according to a certain
classification to achieve the classification effect [2]. The sparse subspace clustering (SSC) algorithm [3] and the
low-rank representation (LRR) algorithm [4] are classic subspace clustering algorithms. Although both the LRR
algorithm and the SSC algorithm are subspace clustering algorithms based on spectral clustering [5], there are
essential differences between the two algorithms in the sparsity constraints of the model. The LRR algorithm is
a subspace clustering algorithm based on two-dimensional sparsity of data and with low-rank global constraints.
However, when encountering noisy data, the sparsity of the low-rank representation coefficients is poor. The SSC
algorithm is a subspace clustering algorithm based on one-dimensional sparsity of data. It constructs a similarity
matrix using the sparse representation coefficients of the data and applies it to the spectral clustering method to
obtain the subspace clustering results of the data [6]. Since SSC only utilizes the spectral information of each pixel
point during the clustering process and does not consider the spatial context information, the connectivity of the
adjacency matrix of the graph is reduced, and even a large amount of salt-and-pepper noise may appear in its final
clustered image [7].

Since in practical applications, the data itself has noise and outliers, which cannot meet the assumption of
subspace independence, the matrix structure of self-expression is disrupted, affecting the clustering results. Lu et
al. [8] proposed a subspace clustering algorithm based on block diagonal representation, imposing block diagonal
constraints on the representation matrix to enable the representation matrix to have a good block diagonal structure.
If the representation matrix had a block diagonal structure, then the coefficients corresponding to pixels that did
not belong to the same category are zero. Then the representation matrix with a block diagonal structure had a
good grouping effect, and when it was input into spectral clustering, good clustering results could be obtained.
Teaching data has high dimensionality and noise. Traditional subspace clustering algorithms are vulnerable to
noise and have relatively low classification accuracy.

2. Sparse Subspace Clustering Algorithm

The SSC algorithm is accomplished based on spectral clustering. The basic idea is that pixel data in a high-
dimensional space can be linearly represented in a low-dimensional space. The sparse representation matrix ob-
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tained by solving the SSC algorithm can better reflect the attributes of the pixel data subspace and has sparsity.
Finally, it is applied to the spectral clustering algorithm to obtain the clustering results.

The sparse model is as follows.

min
c
||C||1 + λ||X −XC||2F , s.t.diag(C) = 0. (1)

In the formula, C ∈ RMN×NM is a sparse coefficient matrix. X ∈ RD×MN is the data matrix. When
imposing sparse constraints on the representation matrix, if equation (1) is an l0-norm constraint, it is a non-
convex optimization problem. The general processing method is to transform the optimization objective into the
l1-norm problem of convex optimization, and then use convex programming tools to obtain sparse solutions.

The sparse coefficient matrix C = [c1, C2 · · · , cMN ] of the pixel points is obtained by equation (1) through the
Alternating direction method of multipliers (ADMM) [10]. Then it standardizes each column vector ci = ci

||ci||∞
of the sparse coefficient matrix. Then, by solving the obtained coefficient matrix C, it calculates the similarity
matrix G = (C + CT )/2. Finally, it is applied to the spectral clustering of standardized segmentation to obtain
the clustering results of all pixels [5]. Since the SSC model is sensitive to noise, Li et al. [9] proposed Gaussian
weighted sparse subspace clustering (GSSC), introducing weights with sparse constraints to make the data linearly
represented by data points in the same subspace as much as possible. The weights of the two data points were
determined by the Gaussian similarity function, and the subspace representation model was as follows.

min
C

∑
j 6=i

1

Wij
|Cij |+ λ||X −XC||2F , s.t.diag(C) = 0. (2)

Where Wij = exp(− ||xi−xj ||22
σ2 ) denotes the Gaussian similarity between xi and xj .

3. LRR Subspace Clustering with Structural and Symmetry Constraints

In the study of subspace clustering, imposing constraints on the structure of low-rank representation solutions
can obtain better clustering results. Therefore, this paper proposes a low-rank representation subspace clustering
method with structural constraints, introducing structural constraints and symmetric constraints into the solutions
of low-rank representations to construct a weighted sparse and symmetric low-rank affinity graph. Here, the low-
rank constraint is used to capture the global structure of the data, the structural constraint is used to capture the
local linear structure of the data, and the symmetric constraint can ensure the consistency of the weights between
each data point. In fact, structural constraints, namely weighted sparse representation, can reveal the strong affinity
among samples of the same class and the strong separability among samples of different classes, that is, the strong
affinity within classes and the strong separability between classes [10-13].

To obtain the representation model from the structure of the data, constraint terms can be imposed on the
structure of the solution of the LRR model. In this paper, the structure of the solution is restricted by adding the∑
i,j Rij |zij | constraint and the zij = zji constraint in the objective function (see Equation (3)). Compared with

the objective function that only considers the kernel norm, this can not only improve the rank of the solution, but
also retain the intrinsic geometric structure between data points, achieving a better subspace clustering effect.

min
Z
||Z||∗ + β||R� Z||1, s.t.X = ZA+ E,Z = ZT . (3)

To make the obtained Z more robust to noise and avoid the NP problem, a structurally constrained symmetric
low-rank representation (SCSLR) model is constructed, as shown in equation (4):

min
Z
||Z||∗ + β||R� Z||1 + λ||Z||2,1. (4)

In fact, when the data is labeled, SCSLR can be regarded as a semi-supervised LRRSC [14]. For data without
labels, the structure of the data can be utilized to construct the weight R, that is, the weight is determined by the
Angle. This means that the smaller the Angle between data points from the same category, the smaller the sample
weight; conversely, the larger it is. Through data standardization processing, after calculating the absolute value
of the inner product between data points, the ideal weight matrix R is constructed as follows:

Rij = 1− exp(−
1− |x∗Ti x∗j |

σ
). (5)

Where, x∗i and x∗j are the normalized data points of xi and xj . σ is the mean value of B element (Bij =

1 − |x∗Ti x∗j |). Usually, the weights between data points from the same category are relatively small, while the
weights between data points from different categories are relatively large. The following text will construct R in
this way.
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3.1. Model Optimization

In this paper, the alternating minimization method is used to solve the objective function in equation (5). It intro-
duces the auxiliary variables J and L to transform the model as shown in equation (6).

min
Z,E
||J ||∗ + β||R� L||1 + λ||E||2,1, s.t.X = AZ + E,Z = J, Z = L, J = JT . (6)

After obtaining the weighted sparse symmetric low-rank representation matrix Z∗, an affinity graph G =
(V,E) is constructed using Z∗. Where V = vi

n
i=1 is the point set and E = ei

n
i=1 is the edge set. When the data set

is given, the problem of graph construction depends on the weight matrix W =Wij . Since each data point can be
represented by a linear combination of other data points, the contribution of other data points to the reconstruction
of xi is represented by the z∗i -th column of Z∗.

In this paper, the weight matrix W is constructed based on the structure of matrix Z∗. It decomposes the
singular values of Z∗ into U∗Σ∗(V ∗)T . The parameters U∗ and V ∗ are respectively the orthogonal bases of the
column and row vectors of the matrixZ∗. First, according to reference [15], it multiplies the weight of each column
of U∗ by (Σ∗)0.5, and multiplies the weight of each row of (V ∗)T by (Σ∗)0.5. Then, by definingM = U∗(Σ∗)0.5

and N = V ∗(Σ∗)0.5, let Z∗ : Z∗ = MN be represented by the matrices M and N . That is, the weight matrix
W of the affinity graph is defined by using the Angle information of all row vectors from matrix M or all column
vectors from matrix N , as shown in equation (7). Among them, mi(ni) and mj(nj) are respectively the i − th
row and the j − th row of the matrix M(N), and the parameter α ∈ N is used to adjust the similarity between
samples.

Wij = (
mT
i mj

||mi||2||mj ||2
). (7)

On this basis, the NCuts algorithm is applied to segment the samples into the corresponding subspaces.
Suppose the graph G = (V,E,W ) is divided into two parts, A and B. These two parts satisfy the conditions
A ∪B = V and A ∩B = O. Then the division formula is as follows:

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
. (8)

assoc(A, V ) =
∑

u∈A,v∈V
w(u, v). (9)

Equation (8) represents the inter-class similarity between parts A and B, and the smaller the value, the better.
Equation (9) represents the sum of the weights of part A and the overall node V . Solving the minimum value of
Ncut can lead to a better segmentation result.

4. Experimental Results and Analysis

To verify the performance of the proposed teaching data classification method that combines deep learning and
sparse subspace clustering algorithm, simulation experiments are conducted on a computer with an Intel Core
i7-10700 processor, 6GB of running memory, an independent graphics card configuration of NVIDIA GeForce
GT930M, and Windows 10 system with the Matlab software. Firstly, the model is trained on the SCB-Dataset.
The clustering accuracy and computing time of the designed method are calculated and it is compared with the
traditional sparse subspace clustering (SSC) algorithm and the low-rank subspace clustering (LSC) algorithm. The
results are shown in Figures 1 and 2.

It can be seen from Figure 1 that the clustering accuracy rates of the three algorithms increase with the increase
of the number of iterations. When the number of iterations is 180, the clustering accuracy rates of the three
algorithms are 91.7%, 78.3%, and 70.1% respectively. It can be seen from Figure 2 that the computing times of
the three algorithms show an upward trend. When the number of classifications is 27, the computing times of
the three algorithms are 11.8s,18.6s and 26.4s respectively. The clustering accuracy of the proposed algorithm
is significantly higher than that of other algorithms, and its computing time is much lower than that of other
algorithms, which proves the accuracy and efficiency of the proposed method in processing teaching data.

To verify the effect of the designed algorithm in practical applications, the study first introduces the normalized
mutual information index, which is a common evaluation index for the effectiveness of clustering methods. The
comparison results of normalized mutual information indicators of different algorithms are shown in table 1.

It can be seen from Table 1 that the average normalized mutual information value of the proposed algorithm is
0.89, the average normalized mutual information value of the sparse subspace clustering algorithm is 0.78, and the
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Fig. 1. The accuracy rates with different algorithms

Fig. 2. The computing time with different algorithms

Table 1. Normalized mutual information indicators with different algorithms

Iteration number Proposed SSC LSC

0 0.95 0.86 0.67
20 0.93 0.77 0.61
40 0.91 0.74 0.59
60 0.89 0.72 0.58
80 0.88 0.71 0.57
100 0.89 0.72 0.57
120 0.89 0.73 0.58
140 0.87 0.73 0.52
160 0.86 0.72 0.59
180 0.85 0.70 0.55
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average normalized mutual information value of the low-rank subspace clustering algorithm is 0.61. The average
normalized mutual information value of the proposed method is higher than that of the other two algorithms,
which proves that its classification effect is better.

The next step is to select a group of noisy data to verify the processing effect of the proposed method on the
noisy data. The evaluation is conducted through the probability rand index and the information change index. The
larger the probability rand index, the better the processing effect; the smaller the information change index, the
better the processing effect. The variation of the probability Rand index curve and the information change curve
of different algorithms is shown in Figure 3. It can be seen from Figure 3 that the average probability Rand indices
of the three algorithms are 0.85, 0.66, and 0.58 respectively. The average Rand index of the proposed algorithm is
higher than that of other algorithms, which proves that the proposed algorithm has strong robustness.

Fig. 3. Probabilistic Rand exponential curves of different algorithms

5. Conclusion

With the advent of the era of big data, the processing of high-dimensional data has become an important research
direction in the field of data mining. Teaching data, as a type of high-dimensional data, its clustering processing is
of great significance for the formulation of teaching plans. Based on the sparse subspace clustering algorithm, the
research introduces unsupervised metric learning to preprocess the data to improve the classification effect, and
designs a teaching data classification method based on the sparse subspace clustering algorithm and deep learning.
The results show that in the comparison of clustering accuracy and computing time, the clustering accuracy of the
designed algorithm is 91.7% and the computing time is 11.8s, which proves its accuracy and efficiency. The above
results prove the effectiveness of the proposed algorithm in processing high-dimensional teaching data. In the
future, it will be verified on more datasets to further improve the performance of the algorithm.
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