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Abstract. Aiming at the problems such as diverse target scales and large-scale changes in crowds in dense
crowd scenarios, a crowd density estimation method based on multi-scale feature fusion and information en-
hancement is proposed. Firstly, considering that small-scale targets account for a relatively large proportion in
the image, based on the VGG-16 network, the dilated convolution module is introduced to mine the detailed
information of the image. Secondly, in order to make full use of the multi-scale information of the target, a
new context-aware module is constructed to extract the contrast features between different scales. Finally, con-
sidering the characteristic of continuous changes in the target scale, a multi-scale feature aggregation module
is designed to enhance the sampling range of dense scales and multi-scale information interaction, thereby
improving the network performance. Experiments on public datasets show that the proposed method in this
paper can effectively estimate the population density compared with other advanced methods.
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1. Introduction

The main task of crowd density estimation is to estimate the total number of people in a scene. It has been widely
applied in fields such as public security management, urban spatial planning, and traffic dispatching, and has
received considerable attention from researchers both at home and abroad. With the continuous growth of urban
population, various gatherings of people are frequently held [1,2]. For instance, large crowds often gather at tourist
attractions, large stadiums, and popular business districts. The demand for crowd counting is increasing day by
day. However, in actual scenarios, due to issues such as diverse target scales, continuous changes in the scale of the
same image, and significant density differences among images, the task of crowd counting still faces considerable
challenges [3].

At present, traditional research schemes for population density estimation can be roughly divided into two
categories, namely, methods based on pedestrian detection and methods based on population regression. The lim-
itation of the pedestrian detection method lies in that when there is occlusion among the crowd, most pedestrians
cannot be accurately detected, resulting in the counting result being much smaller than the actual number of peo-
ple [4]. Although the regression method based on the number of people can solve the occlusion problem, a single
number of people result cannot reflect the distribution of the crowd and spatial information in the scene [5].

In recent years, due to the powerful feature extraction ability of convolutional neural networks (CNN), they
have been widely applied in the field of crowd counting and achieved remarkable results [6]. Li et al. [7] first
proposed a crowd counting model in combination with CNN, but they did not consider the impact of target scale
changes on model performance, resulting in low counting accuracy. Based on this, Ranasinghe et al. [8] proposed
a multi-column convolutional neural network (MCNN), which used three branches with different convolutional
kernels to construct a network model to capture multi-scale features under different receptive fields.

The proposal of MCNN laid the foundation for multi-branch population counting research, but its model struc-
ture has redundancy and the computational cost is high. Therefore, Gupta et al. [9] proposed CSRNet (congested
scene recognition network) by combining the first 10 layers of VGG-16 and dilated convolution, which could
simplify the structure while better aggregating multi-scale features in crowded scenes. Considering that dilated
convolution had the advantage of expanding the receptive field without increasing the computational load, Seo et
al. [10] constructed a multi-scale feature extraction module to improve the accuracy of crowd counting based on
dilated convolution. Wang et al. [11] proposed a scale pyramid network (SPN), which adopted a parallel single-
column structure and constituted a scale pyramid module through dilated convolution to extract deep multi-scale
information. Alotaibi et al. [12] introduced a multi-level bottom-up and top-down fusion network from the per-
spective of feature fusion. By interacting shallow and deep information in a bidirectional manner across different
scales, the effectiveness of multi-scale fusion was enhanced. Patidar et al. [13] proposed a multi-scale generative
adversarial network, which utilized fused features from different levels to detect large-scale changing populations
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and estimated the population density through an adversarial training model. Jaiswal et al. [14] utilized the trellis
encoder-decoder network (TEDNet) to hierarchically aggregate features and improve the expression of scale-
varying targets. Kamra et al. [15] to alleviate the problem of insufficient generalization under different population
densities, constructed multiple pre-trained sub-networks in different density scenarios to mine general density in-
formation. In addition, references [16-19] also utilized contextual information to optimize counting tasks, thereby
enhancing the adaptability and accuracy of the model in complex scenarios.

Although the above-mentioned method can obtain the feature information of the crowd, it only processes
the input image through simple feature extraction and ignores the characteristic of continuous change in the target
scale. Therefore, how to utilize network models to extract the characteristics of people with continuously changing
scales, reduce the loss of spatial detail information, and effectively integrate multi-level scale features remains an
urgent problem to be solved. Therefore, how to utilize network models to extract the characteristics of people with
continuously changing scales, reduce the loss of spatial detail information, and effectively integrate multi-level
scale features remains an urgent problem to be solved. To this end, this paper proposes a dense crowd counting
network based on multi-scale perception. The network structure is mainly composed of the dilated convolution
module (DCM), the context-aware module (CAM), and the multi-scale feature aggregation module (MSAM).
Specifically, the primary features extracted by VGG-16 are respectively processed through the DCM and CAM
modules to obtain rich fine-grained and contextual information. Then, the MSAM module is utilized to extract
multi-scale features and achieve effective aggregation. Finally, the standard convolution is applied to obtain the
final predicted density map. Experimental verification is conducted on the datasets of ShangHai Tech7, UCF-
CC-5021,UCF-QNRF and NWPU. The results show that the proposed method in this paper has better counting
performance.

2. Proposed Crowd Density Estimation Model

The structure of the dense crowd counting network based on multi-scale perception proposed in this paper is
shown in Figure 1. In this figure, Conv3-256-2 indicates that in the convolution operation, the convolution kernel
is 3, the number of channels is 256, and the dilated rate is 2. 3×Conv indicates that the convolution of this layer
is performed three times.

Based on the experience of crowd counting, it can be known that the VGG-16 network mainly uses standard
convolution of size 3 × 3, with a simple and flexible structure. It is often used as a primary feature extractor.
Therefore, in this paper, the first 10 layers of the VGG-16 network are used as the backbone network. The input
image I is extracted through the backbone network to obtain the feature fv , as shown in equation (1).

fv = Fvgg(I). (1)

Where Fvgg is feature extraction function.
Considering that there are a large number of small-scale targets in dense crowd images, a dilated convolution

module with a low void rate is designed after the backbone network to mine the detailed information of the image.
The specific structure is shown in the DCM in Figure 1. In addition, to enhance the network’s perception ability
over large-scale ranges, this paper designs a context-aware module. It mainly pools the input features at different
scales to learn context information and fuses it with the output features of the dilated convolution module to obtain
rich multi-scale information. On this basis, a multi-scale feature aggregation module is also proposed to further
aggregate multi-level features to cope with the continuous changes in scale. Finally, through standard convolution,
high-quality density maps are generated, thereby achieving crowd image counting.

2.1. Context-aware Module

In the PSPNet (pyramid scene parsing network) model proposed by Zhao et al. [20], the pyramid pooling module
(PPM) designed by using pooling branches of different scales can effectively aggregate context information, but
there is a lack of information interaction among features of each scale. Therefore, this paper proposes a context-
aware module based on PPM, and its structure is shown in CAM in Figure 1.

Firstly, the input features are divided into four different groups from coarse to fine according to scale, and
pooling. 1× 1 convolution operations are performed on each group respectively. The sizes of the pooling kernels
in each group are 1× 1, 2× 2, 3× 3, and 6× 6 respectively. Then, bilinear interpolation is used for up-sampling
to obtain scale-aware features fc,j of the same size as the input, as shown in equation (2).

fc,j = Ub(F0(Pave(fv, j), θj)). (2)
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Fig. 1. Proposed network

In the formula, j represents the scale, and Pave(·) is the average pooling function. F0(·) is a convolution
operation of size 1× 1. Ub(·) is a bilinear interpolation function. θj is the network parameter.

Secondly, in order to fully utilize the context information of different scales in the crowd images, CAM adopts
a top-down and branch-by-branch addition approach to aggregate the contrast features of different branches. Then,
through the feature concatenation operation, the output features of the four branches are concatenated and cross-
channel fused with the original features. Finally, the fused features are input into the subsequent convolutional
layers to output the final result. Introducing the CAM structure behind the backbone network can capture feature
information of different scales in a hierarchical manner from coarse to fine, thereby obtaining rich multi-scale
context features.

2.2. Multi-scale Feature Aggregation Module

Inspired by reference [21], introducing semantic information into shallow features and embedding spatial infor-
mation into deep features can effectively integrate features of different scales. Based on this, this paper proposes
a multi-scale feature aggregation module composed of FEB.

FEB is the core component of MSAM, and its structure is shown in Figure 2. Conv3-1 indicates that the
convolution kernel is 3 and the void ratio is 1, and so on. Firstly, to reduce the computational complexity, the
input features are evenly divided into four feature subsets after undergoing 1× 1 convolution, which are x1 to x4
respectively. Here, the number of channels for each feature subset is reduced to 1/4 of the input features. Except
for x1, each of the other xk(k = 2, 3, 4) has a set of corresponding dilated convolution with dilation rates of
(1, 2, 3), (3, 4, 5) and (5, 6, 7) respectively. This setting method can reduce the grid effect of dilated convolution
and improve information continuity. At the same time, it connects with other subsets in the form of residuals. For
the k − th subset, its corresponding output is:

fe,k =


xk k = 1

Ck,3(

k∑
n=2

Cn,2(

n∑
l=2

Cl,1(xk))) k = 2, 3, 4
(3)

Where Ck,3(·) is the third dilated convolution operation in the k − th row, and other similar structures follow
this pattern.

By fusing fe,k and refining the feature map, the output feature FEB of the ffeb structure is obtained as:

ffeb = fin ⊕ (F1(

4∑
k=1

fe,k)⊗ ϕ(F2(F1(

4∑
k=1

fe,k)))). (4)

Where, fin is the input of the FEB structure. Both F1(·) and F2(·) are standard convolution. ϕ(·) is the sigmoid
activation function, where is the addition of each element. ⊕ is the multiplication of each element.
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Fig. 2. Structure of feature enhancement block

In FEB, the loss of pixel information is effectively reduced by setting the void rate coprime between dilated
convolution layers and closely connecting each extended layer with other layers. Meanwhile, dilated convolution
with a void rate of 3 and 5 is used twice each in the network to avoid jumps in the size of the receptive field. In
summary, FEB enriches the scale diversity by enhancing the continuity of the receptive field range, which is more
conducive to extracting population features with continuous scale changes.

However, due to the lack of correlation between FEBs, this paper designs an MSAM structure in combination
with the dense residual connection strategy [22]. By integrating the multi-scale features of different network layers,
cross-layer connections between networks of different depths are achieved. Among them, integrating the relatively
shallow detail information into the deep layer makes the information of the subsequent layers more abundant.
Meanwhile, the reuse of features can reduce the information loss caused by the deepening of the network and
improve the model performance.

2.3. Structured Density Map

Since training the network model requires estimating the crowd density map from the input crowd images, we
generate the density map needed for training based on an adaptive Gaussian kernel proposed in reference [23].

Suppose there is a head at the pixel xi position, which can be represented by the function δ(x − xi), then an
image containing the head position markers of N people can be represented as:

H(x) =

N∑
i=1

δ(x− xi). (5)

To convert it into a continuous density function, here a Gaussian kernelGσ(x) is convolution with this function
to generate a continuous density map F (x) = H(x) ∗ Gσ(x). However, the distortion between the ground plane
and the image plane caused by the shooting Angle of the image leads to the head size of each person in the image
being different, thus making it impossible to determine the parameters of the Gaussian kernel σ. According to
the idea in reference [24], in a crowded scene, the parameter σ of each person are adaptively determined by the
position of each person’s head and the average distance between the heads of adjacent people. The following
presents the scheme for determining the parameter σ of the Gaussian kernel.

For each head xi in a given crowd image, if the distance between it and its k adjacent heads is defined as
di1, d

i
2, · · · , dik, then the average distance from the k adjacent heads to head xi can be defined as:

d̄i =
1

k

k∑
j=1

dkj . (6)

Here, the Gaussian kernel parameter σi of head xi is determined by the average distance d̄i. Define σi = βdi,
β = 0.3, k = 4. Then the density graph F is ultimately defined as:

F (x) =

N∑
i=1

δ(x− xi)Gσi
(x). (7)

Here, N represents the total number of heads in the image. xi represents the coordinates of a person’s head
in an image. Based on this scheme, it can be understood that geometrically adaptive Gaussian kernel generation
density maps are generally suitable for crowded crowd scenarios, while sparse crowds usually adopt fixed Gaussian
kernels to generate density maps. For generating density maps with a fixed Gaussian kernel, the principle is similar
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to that of the geometrically adaptive Gaussian kernel. The only difference is that each σi is fixed, and different
population datasets have different σi.

2.4. Loss Function

In this paper, the model training first adopts Euclidean loss to calculate the difference between the estimated
density map and the true density map, which is defined as follows:

L(θ) =
1

2N

N∑
i=1

||I(Xi, θ)− Igti ||
2. (8)

Where θ represents the parameter model. I(Xi, θ) represents the output model. The Xi and Igti respectively
represent the i− th original input image and the true density map in the training set.

Considering the performance of the model in sparse scenarios, this paper introduces a relative crowd loss to
improve the performance of the model in sparse scenarios. The loss is defined as follows:

LD(θ) =
1

N
||I(Xi, θ)− Igti

Igti + 1
||2. (9)

Where, the denominator Igti + 1 is to prevent the denominator from being zero.
Therefore, the total loss function of the model can be defined as:

Lloss = L(θ) + α× LD(θ). (10)

Here, α represents the proportion of the relative population loss in the total loss function. In this paper, we
take α = 0.1.

3. Experiment and Result Analysis

3.1. Training Details

The method code in this paper is implemented based on the Pytorch framework and experiments are conducted
under the configuration of the Windows10 operating system and NVIDIA GeForce RTX 3080GPU. In addition,
the model training uses the Adam optimizer, with the learning rate set to 1× 10−4 and the momentum set to 0.9.
Each batch of samples contains 10 images. To ensure the model is fully trained, random flipping and cropping
operations are performed at different positions on the images to enhance the model’s robustness.

3.2. Real Density Map Generation

The adaptive Gaussian kernel method is adopted to generate the true density map (DGT ), as shown in equation
(11).

DGT =

M∑
m=1

δ(p− pm)Gσm
(x). (11)

σm = βdm. (12)

Where M represents the total number of head marker points in the image. p is the image coordinate. pm is the
coordinate of the m− th head marker point. δ(p− pm) is the impact function. Gσm

is a Gaussian kernel filter. σm
represents the size of the Gaussian kernel. β is a hyperparameter with a value of 0.3. dm is the average distance
between pm and three adjacent targets.
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3.3. Evaluation Index

Mean absolute error (MAE) and root mean square error (RMSE) are commonly used evaluation criteria in crowd
counting, and their definitions are shown in equations (13) and (14).

MAE =
1

Nte

Nte∑
i=1

|yGT,i − yi|. (13)

RMSE = [
1

Nte

Nte∑
i=1

(yGT,i − yi)2]0.5. (14)

Where Nte represents the number of test images. yGT,i and yi represent the actual and predicted numbers of
people in the i− th test image, respectively.

3.4. Datasets

The Shanghai Tech dataset consists of two parts: Part-A and Part-B. Part-A consists of 482 dense images randomly
collected from the Internet, and Part-B consists of 716 sparse images taken on the bustling streets of Shanghai.

UCF-CC-50 is the first dataset of dense crowd images [25]. This dataset contains 50 grayscale images of
different resolutions, with high density and multiple complex scenes, which is very challenging. According to
reference [26], the five-fold cross-validation method is used in the experiment to verify the model performance.

The UCF-QNRF dataset was proposed by Idrees et al. [27] and consisted of 1535 high-resolution dense im-
ages. The scene, Angle and light variations of this dataset are rich and diverse, and the distribution is chaotic,
making the challenge very difficult.

NWPU is a large dataset publicly released by Northwestern Polytechnical University in 2020 [28], consisting
of 5109 high-resolution images, including 351 negative samples, covering a variety of complex scenarios. It is
currently the largest and most challenging dataset for crowd counting.

3.5. Experimental Results and Analysis

Training is conducted on four datasets and compared with advanced existing methods. The results are shown in
Tables 1-5. The bold values indicate the optimal values.

Table 1. Comparison results with different methods on Shanghai Tech Part-A

Model MAE RMSE

MCNN [29] 110.3 173.3
CSRNet [30] 68.3 115.1
PDD-CNN [31] 64.8 99.2
TEDNet [32] 64.3 109.2
KDMG [33] 63.9 99.3
BL [34] 62.9 101.9
CAN [35] 62.4 100.1
MCANet [36] 60.2 100.3
SC2Net [37] 59.0 97.8
Proposed 62.6 95.8

From the above results, it can be seen that the proposed method in this paper has strong competitiveness on
all four datasets. In the model performance comparison of the Shanghai Tech dataset, compared with SC2Net, the
MAE of proposed method is slightly lost. This is because there are more background interferences in this dataset.
To some extent, it affects the accuracy of model counting. However, RMSE decreases by 2.0% on Part-A and 3.5%
on Part-B, indicating that proposed method has good stability. In the few-shot dataset UCF-CC-50, compared with
MCANet, the MAE of proposed method decreases by 13.7% and the RMSE decreases by 13.6%. Meanwhile, for
the UCF-QNRF dataset with rich scenarios, compared with BL, the MAE of proposed method decreases by 1.1%
and the RMSE decreases by 4.3%. Compared with other comparison models, it shows good counting performance.
This is because in this paper, on the basis of aggregating context and multi-scale information, a densely connected
multi-scale feature aggregation module is constructed, thereby reducing the influence of continuous scale changes.
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Table 2. Comparison results with different methods on Shanghai Tech Part-B

Model MAE RMSE

MCNN 26.5 41.4
CSRNet 10.7 16.1
PDD-CNN 8.9 14.4
TEDNet 8.3 12.9
KDMG 7.9 12.8
BL 7.8 12.8
CAN 7.9 12.3
MCANet 6.9 11.1
SC2Net 7.0 11.5
Proposed 7.0 11.1

Table 3. Comparison results with different methods on UCF-CC-50

Model MAE RMSE

MCNN 377.7 509.2
CSRNet 266.2 397.6
PDD-CNN 205.5 311.8
TEDNet 249.5 354.6
KDMG 238.7 346.1
BL 229.4 308.3
CAN 212.3 243.8
MCANet 181.4 258.7
SC2Net 209.5 286.4
Proposed 156.6 223.4

Table 4. Comparison results with different methods on UCF-QNRF

Model MAE RMSE

MCNN 277.1 426.1
CSRNet 120.4 208.6
PDD-CNN 115.4 190.3
TEDNet 113.1 188.1
KDMG 99.6 173.1
BL 88.8 154.9
CAN 107.1 183.1
MCANet 100.9 186.0
SC2Net 98.6 174.6
Proposed 87.8 148.3

Table 5. Comparison results with different methods on NWPU

Model MAE RMSE

MCNN 218.6 700.7
CSRNet 104.9 433.5
PDD-CNN 103.2 430.7
TEDNet 99.8 421.9
KDMG 100.6 415.6
BL 93.7 471.4
CAN 93.6 489.9
MCANet 91.5 395.7
SC2Net 89.8 348.9
Proposed 82.0 300.4
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The experimental results on the UCF-CC-50 and UCF-QNRF datasets show that proposed method can achieve
better accuracy in dense scenarios. Furthermore, in the NWPU dataset with a wide range of variations in the
number of people, proposed method achieves the best MAE and RMSE among the comparison models. Although
the addition of negative samples increases the training difficulty, it helps improve the generalization ability of the
model. Moreover, experiments have fully demonstrated that proposed method has better robustness.

To further verify the prediction effect of the proposed model in this paper, Figure 3 shows some visualization
prediction results of the proposed method on different datasets. As can be seen from Figure 3, the predicted density
map generated by the proposed method is closer to the real density map and achieves good counting results on all
four datasets, indicating that the proposed method has a good multi-scale feature extraction ability.

Fig. 3. Partial visualization results

3.6. Ablation Experiment

To further verify that CAM can effectively improve the model performance, ablation experiments were conducted
on the original PPM and CAM structures on the Shanghai Tech dataset Part-A, and the results are shown in Table
6.

Table 6. Ablation experiments of CAM structure

Method MAE RMSE

Proposed+PPM 63.7 105.5
Proposed+CAM 62.6 95.8

As can be seen from Table 6, the performance has been improved when the CAM structure is used in this
paper, with MAE reduces by 1.1 and RMSE reduces by 9.7. Because CAM can effectively promote the interaction
of feature information at various scales, enhance context awareness, and improve the robustness of the model.

The proposed model is mainly composed of three modules: CAM, DCM and MSAM. To further verify the ra-
tionality and effectiveness of the structure of each Part, CAM, DCM, CAM+MSAM, DCM+MSAM, DCM+CAM
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Table 7. Ablation experiments of different module structures

Method MAE RMSE

CAM 68.3 118.9
DCM 66.3 113.1
DCM+CAM 65.0 109.9
CAM+MSAM 65.6 111.5
DCM+MSAM 64.1 111.6
DCM+CAM+MSAM 62.6 95.8

and DCM+CAM+MSAM are respectively tested on the ShangHai Tech dataset Part-A. Ablation experiment re-
sults are shown in Table 7.

It is not difficult to find from Table 7 that both a single CAM and a DCM can obtain population information to a
certain extent, but their counting accuracy is relatively low. After fusing DCM and CAM, the counting performance
has been improved, indicating that the multi-scale information extracted by the fused structure is richer. The
proposed method, based on the fusion structure, densely connects four layers of FEB structures to enhance the
information transmission of each network layer and improve the modeling ability of continuous scale changes,
achieving the best counting results in both MAE and RMSE. In addition, after CAM and DCM are combined
with MSAM respectively, MAE decreases to 65.6 and 64.1 respectively, and RMSE decreases to 111.5 and 111.6
respectively, indicating that the MSAM structure has a good enhancing effect on feature aggregation.

4. Conclusion

A dense crowd counting network based on multi-scale perception is proposed and its performance is verified on
four benchmark datasets. Its evaluation index is superior to other comparison methods, and it has good counting
accuracy and robustness for different dense crowd images. The multi-scale feature aggregation module cascades
four feature enhancement blocks in a dense residual connection manner, effectively aggregating cross-level fea-
tures and improving the continuity of multi-scale information. The ablation experiment has fully demonstrated that
this module can effectively enhance the modeling ability of continuous scale changes. The context-aware module
designed based on the pyramid pooling structure can promote the interaction of multi-scale information among
various branches and enhance the expression of multi-scale context information. In subsequent work, from the
perspective of enhancing the robustness of the algorithm to background information, an attention mechanism will
be introduced to better focus on crowd areas, further weakening the influence brought by background interference
and chaotic crowd distribution, and improving the performance of crowd counting.
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