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Abstract. Traditional deep learning-based shadow removal methods often alter the pixels in non-shadow areas
and fail to produce shadow removal results with natural boundary transitions. To solve this problem, we propose
a novel multi-stage shadow removal framework based on Generative Adversarial Networks (GAN). Firstly, the
multi-task-driven generator respectively generates the corresponding shadow mask and shadow mask for the
input image through the shadow detection subnet and the mask generation subnet. Secondly, guided by the
shadow mask and shadow mask, the full shadow module and the partial shadow module are respectively de-
signed, and different types of shadows in the image are removed in stages. The sequential data from multiple
sensors is used as the input of the time series generative adversarial network to generate sequence data with
temporal dynamic characteristics; the data synthesized by the time series generative adversarial network is
used to replace the noise input data in the gradient-penalized WGAN generative adversarial network, and the
discriminator combines graph convolutional networks, long short-term memory networks and attention mech-
anisms to more effectively explore the spatio-temporal correlations of multi-source heterogeneous sensing data
and enhance the discriminative ability for sequential data. Then, a new combined loss function was constructed
based on the least squares loss to achieve better results. Compared with the latest deep learning shadow removal
methods, on the selected dataset, the balance error rate of the proposed method decreases by approximately
4.39%, the structural similarity increased by approximately 0.44%, and the pixel root mean square error de-
creases by approximately 13.32%. The experimental results show that the shadow removal results obtained by
this method have smoother boundary transitions.

Keywords: Deep learning, Generative Adversarial Network, Image processing, Shadow removal, Shadow de-
tection.

1. Introduction

Shadows are widely present in images, and they can provide many important information for computer vision
research tasks such as image depth estimation. However, they also significantly increase the difficulty of tasks
such as object detection and target tracking [1]. Therefore, image shadow removal has always been a research
hotspot in the field of image processing. Shadows have various shapes and types, and their types can be divided
into full shadows and partial shadows: Full shadows are located within the shadow area, where the light source
is completely blocked, and their brightness is relatively low and the color is darker. The penumbra lies between
the umbra and the non-shadow area [2]. The illumination from the light source gradually returns to normal. Under
the combined influence of ambient light and the light source, its brightness gradually increases and its color
gradually returns to normal. The shadow removal method usually requires shadow positioning and shadow removal
in sequence. During the shadow positioning process, the methods used in references [3,4] are shadow detection.

Reference [5] was based on the statistical learning method, but this method overly relied on custom shadow
features. Reference [6] used a convolutional neural network (CNN) for shadow detection, but due to the limitations
of the dataset size and the block processing mechanism, this method had poor generalization ability, and on the
other hand, required additional global optimization steps to ensure the global coherence of the image. The artificial
marking method used in references [7,8] could accurately locate shadows, but it required a large amount of addi-
tional annotation work. In the shadow removal process, traditional shadow removal methods can be classified into
the illumination migration methods [9], the gradient domain removal methods [10], and the color domain removal
methods [11]. In the references [12], the optimal non-shadow blocks for the shadowed image blocks were found
using the illumination migration method, and then the illumination information was filled. However, due to the
need for a series of preprocessing such as image segmentation and clustering, the efficiency needs to be improved.
In the references [13], the gradient domain removal method merely altered the gradient variables of the halftone,
and thus was not applicable to the illumination variables of the full image. In the color domain removal methods,
in reference [14], the Bayesian formula was used to extract the mask image to remove the shadows in the image,
while in reference [15], the intensity surface restoration method was used to remove the shadows.
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In recent years, end-to-end shadow removal methods [16,17] have rapidly become the mainstream due to their
high computational efficiency. These methods can be classified into eigenvalue decomposition methods [18] and
deep learning methods [19]. In reference [20], the shadow detection step was bypassed through eigenvalue decom-
position. However, this method altered the color of non-shadow areas, which gone against the original intention
of shadow removal. Among the numerous shadow removal methods based on deep learning, the work [21] used
CNN and combined the appearance and semantic information of shadows in the image to generate a mask for the
shadow image, thereby obtaining the shadow removal result. Reference [22] employed two-condition generative
adversarial networks (cGANSs) to conduct shadow detection and shadow removal respectively. Reference [23] con-
structed a shadow image attenuator based on cGANS to generate diverse image samples, thereby enhancing the
generalization ability of the model. Reference [24] used shadow images and their corresponding non-shadow im-
ages for supervised learning training. The data collection process involved using a camera to first capture shadow
images, and then removing different shapes of obstructions to capture the corresponding non-shadow images. This
type of method constructs a dataset with a significant problem: When capturing shadow images and their corre-
sponding non-shadow images, due to changes in the camera exposure and posture, as well as the ambient lighting,
the image pairs composed of the shadow images and the corresponding non-shadow images are inconsistent in
terms of color information, lighting information, or spatial position. This will prevent the model from accurately
learning the intrinsic relationship between shadows and non-shadows, thereby resulting in a phenomenon where
the color and lighting information of the shadow recovery area and the non-shadow area are not coherent.

In order to achieve better shadow removal results, this paper first combines the multi-task learning method to
conduct shadow detection and mask generation on shadow images. The shadow detection task aims to identify
the positions of different types of shadows, while the mask generation task simulates the intrinsic relationship
between shadow pixels and non-shadow pixels. On this basis, different modules are designed for different types of
shadows to remove full shadows and partial shadows in a phased manner, so as to obtain a shadow removal result
with natural boundary transitions.

2. Multi-stage Generative Adversarial Network

2.1. Time Series Generative Adversarial Network

TimeGAN consists of four networks: the embedding network, the recovery network, the sequence generator, and
the sequence discriminator [25]. The core of the TimeGAN model lies in the joint training of the autoencoder
network (embedding network and reconstruction network) and the adversarial network (sequence generator and
sequence discriminator). This training mechanism enables TimeGAN to effectively capture the dynamic character-
istics of data that change over time while learning to encode features and generate temporal sequence representa-
tions. The autoencoder network is trained through supervision and reconstruction losses, where the reconstruction
loss ensures the accuracy of the learned latent representation, and the supervision loss guides the sequence gener-
ator to learn the temporal dynamic characteristics of the data. The embedding network and the recovery network
establish a mapping relationship between the features and the latent space, allowing the adversarial network to
learn the temporal dynamic characteristics of the data through low-dimensional representations. The formula of
the embedding network is as follows:

hs = es(s). (1)

hy = ez(hsyhtflaxt)' 2

Where s and z; represent the static features and spatial features respectively. h; and h; are mapped into feature
vectors in the latent space through the embedding function. The recovery network restores the static features r
and temporal features r,, in the latent space to their initial states, as shown in the following formula.

§=ry(hs). 3)

Ty = Tz(ht)- “4)

The sequence generator uses random variables z, and z; to synthesize samples. By capturing the static features
hs and temporal features h, in the latent space, it generates new features h; and h;.

hs == gs(zs)- (5)
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he = ge(ha, hu_1, 20). (6)

The sequence discriminator is used to determine the authenticity of the data in the latent space. The formula is
as follows:

s = ds(hs). 7

G = do (e, Wy). (8

Where dg and d, are the feature discriminators, serving as classification functions for static and temporal
features respectively. §j, and §, are respectively the discriminator labels. @y = @, (hs, hy, We_1) and Ty =
?w(ﬁs, ﬁt, Wtﬂ) respectively represent the sequences of the forward and backward hidden states. c,, is a recur-
sive function.

TimeGAN consists of three loss functions: reconstruction loss L R, unsupervised loss LU, and supervised loss
LS. The formulas are as follows:

LR = Esx pyp(eullls = 8ll2+ > |z — Zf2]. ©)
t

LU = Es x pyu,.[l08ys + Y logy]. (10)
t

LS =FEgx Pdam[zHht_g:r(hsaht71>zt)”2]~ (11)

t

The TimeGAN models constructed in the text all adopt GRU (Gated Recurrent Unit) network models to build
each component. The model consists of an embedding network, a recovery network, a generator, a discrimina-
tor, and a supervision network. Except for the supervision network which uses a 2-layer hidden layer, the other
networks all use a 3-layer hidden layer. Among them, the sequence generator extracts random vectors from the
input two-dimensional Gaussian white noise, converts them into time vector features, and inputs them into the
latent space. The sequence discriminator is responsible for extracting time features from the latent space and dis-
criminating between true and false. The embedding network maps the original sequence data to the latent space,
while the recovery network is responsible for restoring the output of the latent space to data with the original se-
quence features. The adversarial network generates new sequence data using the features in the latent space. The
supervision mechanism guides the synthetic data to approach the real sequence data by predicting the continuous
sequence.

The algorithm flow of the model is as follows: Firstly, the minority samples in the imbalanced fault dataset
are preprocessed, including data normalization and the construction of multi-sensor sequence data using a sliding
window, forming multiple two-dimensional data samples; Secondly, TimeGAN uses real sequence sample data
and random noise data to generate time series feature samples; Then, WGAN-GP uses real sequence sample data
and the data generated by TimeGAN to generate more high-quality and diverse time series feature data; Finally,
the above data processing steps are repeated for each type of minority sample fault to expand the imbalanced
samples, thereby constructing a balanced dataset for fault diagnosis.

2.2. Shadow Module

If the types of shadows are not distinguished and a uniform strategy is adopted to handle all types of shadows, it
will result in obvious shadow boundaries in the final result, which will greatly affect the visual appeal of the image
and the machine understanding process. Therefore, the semi-shadow module combines perceptual loss and uses
high-level semantic information as a guide to simultaneously repair the shadow boundary area within a small range
and achieve a friendly transition at the shadow boundary. The semi-shadow module aims to repair the semi-shadow
mask Mp, the corresponding image area, and its internal structure is shown in Figure 1.

In Figure 1, the input of the penumbra module is the shadow mask M and the full shadow removal image y'.
According to the requirements of the penumbra module, the penumbra mask Mp is extracted. Based on the idea
of image restoration, Mp is taken as the area to be repaired in the image 3’. Just like the shadow detection subnet
and the mask generation subnet, its function is relatively independent. It undergoes pre-training to enable the final
overall network to converge better during training. Its network input consists of a three-channel ¢’ and a single-
channel Mp, forming a four-channel image; its output is a three-channel shadow removal image. The pre-training
objective function of the boundary reconstructive atom network is shown in equation (12).
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Here N represents the number of training samples. y represents the label data of the real shadow-free image.
R(-) is the output of the boundary reconstruction neural network. The boundary restoration sub-network aims to
reduce the pixel differences between the restoration area and the GT image on the boundary semi-shadow area

Inspired by the method in reference [26], if the model merely uses the pixel differences in equation (12) as
the optimization objective, this pixel-based optimization approach will ignore the global similarity of the image,
resulting in poor visual effects of the semi-shadow area in the shadow boundary restoration. This paper minimizes
the differences in image semantics between the shadow-removed images and the real non-shadowed images by
minimizing the perceptual loss function, as shown in equation (13). The key difference is that this paper no longer
uses pre-trained deep networks to extract the features of the GT image and the shadow-removed image %', but
instead uses the subsequent discriminator to extract the high-level semantic features of both, while significantly
reducing the complexity of the model.

n 1 A
Lp=270HW,IIDi(y) — Di(y)II>. (13)
Z:1 (2 7 7

Where n represents the total number of layers of the discriminator. § represents the shadow-free result obtained
after being processed by the two modules in the past and the present. y represents the actual shadow-free image.
D; is the ¢ — th layer of the discriminator. C; is the number of channels corresponding to the ¢ — th layer. H; and
W; are the length and width of the feature map of the ¢ — th layer.

The discriminator in this paper is similar to that in reference [27]. The discriminator in this paper is designed to
determine whether the shadow removal image generated by the generator for the shadow image is real. Essentially,
this stage is an image binary classification problem. The discriminator consists of multiple convolutional blocks.
In each convolutional block, the convolutional layer is immediately followed by batch normalization and Leaky
Rectified Linear Unit (LReLU). The last layer of the discriminator is a Sigmoid function, whose output is the
probability value that a pair of images is true.

2.3. Loss Function

The loss function of this network is mainly composed of the least mean square loss, supplemented by the average
absolute error loss and the restoration loss, and its weighted form is as shown in equation (14). Its function is to
perform final optimization towards additional constraints after the pre-training of multiple subnets. Therefore, its
composition does not include the loss function term of pre-training.

L =MLy + XLy, + AsLy,. (14)

After analyzing the combination of loss functions, compared with the conventional adversarial loss function
L,, using the least mean square loss L; as the dominant one can yield better results, as shown in equation (15).

L1 = EgyPrraie. [D(x,9)7]. (15)

Furthermore, the mean absolute error loss in equation (16) encourages the generated results to be closer to the
true image without shadows.

1 N
L = 5 > v = 9ill* (16)
i=1

Here, N represents the number of training samples. Equation (16) is designed to obtain an average error.
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3. Experiments and Result Analysis

3.1. Dataset

We combined the objective data sets SRD and ISTD into a comprehensive data set. Among them, SRD contains
3088 sets of shadow and non-shadow images, while ISTD contains 1870 sets of shadow, shadow binary masks, and
non-shadow images. This paper uses the root mean square error (RMSE) of pixels to calculate the error between
the shadow images and the real non-shadow images in the comprehensive dataset in the non-shadow areas. 1500
groups of images with less error and diverse scenes are selected. Then, the shadow images and non-shadow images
in these 1500 groups of images are subtracted. Then, it subtracts the shadow images from the non-shadow images
in these 1500 groups of images. We set the threshold at 20 in the three channels, and then perform morphological
filtering and manually adjust the incorrect pixel labels of the shadow images to obtain the corresponding binary
shadow masks for the dataset.

As shown in Figure 2, based on the binary mask of the shadows in the comprehensive screening dataset (Figure
2(b)), the shadow alpha mask is obtained using the image segmentation method in reference [28], as shown in
Figure 2(b); using Equation (10), the sample mask in Figure 2(c) is obtained by dividing Figure 2(d) by Figure
2(a). Figures 2(a) and 2(b) are used for pre-training the shadow detection subnet, Figures 2(a) and 2(c) are used for
pre-training the mask generation subnet, and Figures 2(a) and 2(d) are used to train the generator and discriminator
in the network of this paper. Finally, 80% of the data in the comprehensive screening dataset is extracted for the
training of the network of this paper, and the remaining 20% is used for feasibility verification.

(a) Sample shadow (b) Sample shadow
image mask

(d) Sample image

(c) Sample mask without shadow

Fig. 2. Samples of comprehensively filtered dataset

3.2. Objective Evaluation Indexes

Using the balanced error rate (BER) as the measurement index for shadow detection, the calculation method is as
shown in equation (17).

TP TN
+ ). a7
TP+ FN TN+ FP

TP, TN, FP and F' N represent the correctly generated negative image pixels, the correctly generated non-
negative image pixels, the incorrectly generated negative image pixels, and the incorrectly generated non-negative
image pixels respectively.

The RMSE and Structural Similarity Index (SSIM) are used as the measurement indicators for shadow re-
moval. Among them, RMSE measures the error between the shadow-removed image and the true shadow-free
image, while SSIM reflects the structural information and is more in line with human visual perception of the
image.

BER =1—0.5(

(18)

Here I and I’ represent the images before and after shadow removal, composed of the R, G, and B color
channels. n is the number of pixel points in the input image.
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SSIM (z,y) = (19)

3.3. Results Quantification Analysis

Since shadow detection and shadow removal both belong to the relatively popular research directions in the field of
image processing, and since many methods cannot simultaneously achieve both shadow detection and mask gener-
ation, this paper conducts experimental comparisons using images from different scenarios from the perspectives
of shadow detection, mask generation, and the final shadow removal results.

Firstly, from the perspective of shadow detection, this paper analyzes the proposed method, DTN [29], and
MAGC [30]. As shown in Figure 3, four images of different scenes are selected from the test set, including
various types of shadows such as cross-texture shadows, soft shadows, and hard shadows to comprehensively test
the detection performance of different methods. Specifically, DTN uses Support Vector Machine (SVM) to detect
shadows, and then removes the shadows based on the physical lighting model. MAGC conducts shadow detection
and shadow removal tasks simultaneously based on cGANs with shadow detection and shadow removal learning
from each other and promoting each other.

Figure 3(a) shows the shadow image to be processed. Figure 3(b) shows the real shadow binary mask. Figure
3(c) shows the shadow detection result of DTN method. Figure 3(d) shows the shadow detection result of the
MAGC method. Figure 3(f) shows the result of the method in this paper. Comparing Figure 3(b) and Figure
3(c), due to the lack of robust shadow features, traditional feature extraction machine learning methods cannot
accurately detect the shallower shadows, such as the shadow of the umbrella on the cement ground in the second
row and the shadow of the person on the grass in the fourth row. Compared with traditional machine learning
methods, the MAGC method based on cGANSs and this method perform relatively better in this aspect. Comparing
Figure 3(d) and Figure 3(e), because this paper uses the Alpha Matting result as the training sample, the detection
details at the shadow boundaries of this method are more abundant. Table 1 and table 2 are the specific objective
evaluation indicators.

Fig. 3. Shadow detection results

Table 1. Results on SRD dataset with different methods

Method RMSE SSIM

DTN 7.12 0.9712
MAGC  6.65 0.9735
Proposed 5.45 0.9798
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Table 2. Results on ISTD dataset with different methods

Method RMSE SSIM

DTN 8.05 0.9736
MAGC 747 0.9774
Proposed 6.68 0.9795

4. Conclusion

In order to obtain a shadow removal image with a smooth transition of shadow boundaries, a novel multi-stage
removal method based on the generative adversarial network is proposed. The generator in this network has the
ability of both shadow detection and shadow removal. The shadow detection subnet and the mask generation
subnet provide accurate processing areas for the full shadow module and the semi-shadow module. Based on
the idea of image restoration in small regions, combined with perceptual loss to reduce the differences in image
semantics of the generated results, the transition of shadow boundaries will be more natural. In the future, the
performance decline problem of deep learning methods when facing new datasets will be studied, and a domain
transfer (Domain Shift) method for shadow removal will be implemented.
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