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A B S T R A C T

Knowledge reasoning and question answering (QA) is significant in contemporary artificial intel-
ligence. It simulates the logical reasoning processes of humans to derive new information from
existing knowledge. However, current knowledge reasoning QA systems still face two challenges.
On one hand, when dealing with multi-hop questions, the system needs to associate and reason
across multiple pieces of knowledge paths, which not only increases computational complexity
but also leads to inaccurate reasoning results. On the other hand, reasoning models often lack
generalizability, they struggle to adapt to diverse real-world application contexts. These issues are
particularly pronounced in industry and healthcare. For the industrial sector, equipment fault diagnosis
and predictive maintenance require accurate understanding of complex technical terms and domain-
specific jargon. These concepts are often highly specialized and abstract, making them difficult
to reason. For healthcare domain, the high accuracy and reliability of QA systems are necessary.
Any minor error in disease diagnosis could lead to serious consequences. Moreover, knowledge in
these fields evolves rapidly, necessitating the system to update the knowledge base in real time. To
address the aforementioned challenges, we propose a secondary reasoning QA algorithm enhanced
by large language models for multi-hop questions. Our model leverages attention mechanisms to
iteratively optimize path selection and utilizes the semantic understanding capabilities of LLM to
further excavate the semantic background. Through experimental validation on four datasets, our
model has demonstrated remarkable performance on multihop QA tasks, significantly enhancing the
accuracy and generalization of the QA system.

1. Introduction
Multi-hop knowledge-based question answering is the

task of answering a question in natural language by ob-
taining and composing two or more independent pieces of
evidence through multiple reasoning steps[1].At their core,
existing multihop knowledge-reasoning QA methods can be
grouped into three paradigms: memory-augmented, graph-
neural network, and retrieval-generation fusion. Within the
memory-augmented paradigm, KVMemNN[2] was the first
to bring key-value memory to QA, performing joint KB
and text reasoning via multihop memory reads. SRN[3]
explicitly incorporates a search-and-reason cycle within
the memory network to mitigate cascading errors. With
the advent of graph neural networks, GraftNet[4] simul-
taneously constructs graphs from KB sub-graphs and text
passages, using GNNs to perform multi-granularity aggre-
gation. PullNet[5] iteratively “pulls” relevant entities and
sub-graphs, substantially enlarging the reasoning scope.
ReifKB[6] restructures KB triples into hyperedges, leverag-
ing hypergraph convolution to capture high-order relations.
BINET[7] introduces a bidirectional information bottle-
neck to prune redundant KG neighborhoods, enhancing
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performance on 3-hop questions. Hic-KGQA[8] employs
hierarchical contrastive learning to address the false negative
supervision problem in multihopscenarios. In the retrieval-
generation fusion paradigm, VRN[9] treats path search as
latent-variable inference through a variational reasoning
network. EmbedKGQA[10] learns entity and relation em-
beddings directly, eliminating the need for explicit paths
and allowing inference via simple vector matching. CBR-
SUBC[11] adopts case-based reasoning, rapidly adapting to
new domains by reusing subgraphs.

Despite recent advances, multi-hop knowledge reason-
ing QA still confronts three key challenges:

1. Semantic–Structure Gap: heterogeneous represen-
tations of text and the knowledge graph hinder unified
reasoning and cause accuracy to drop sharply beyond
two hops.

2. Noise and Incompleteness: missing edges in the
KG and redundant textual information easily mislead
memory and graph-based models when applied to
large corpora.

3. Opacity of Embeddings: many efficient embedding-
based methods generate reasoning paths that remain
uninterpretable to humans.

To bridge these gaps, large language models have emerged
with their profound semantic understanding, ushering in a
fresh opportunity to tackle multi-hop question answering.[12].
Through unsupervised pre-training on large volumes of
textual data, LLMs have amassed an extensive repository
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Figure 1: Current challenges in multi-hop knowledge-based question answering.

of semantic knowledge[13]. This enables them to more
accurately comprehend the semantic nuances within ques-
tions and knowledge bases, thereby facilitating a more
precise grasp of the key points and context of questions
in multi-hop QA scenarios, which is essential for accurate
reasoning. Their robust capability for multi-step reason-
ing, bolstered by complex neural network architectures
and attention mechanisms, allows them to emulate human
reasoning processes[14]. They can iteratively search for and
integrate information within knowledge bases, effectively
tackling the complex reasoning paths that are characteristic
of multi-hop QA tasks. However, large language models still
face three key challenges in multi-hop question answering:
deep integration with knowledge graphs remains poorly
interpretable; complex and abstract technical terms are hard
to grasp, leading to weak downstream performance; and
although semantic understanding is strong, computational
costs are high, so efficiency must be improved[15].

Downstream tasks reveal the critical role of knowledge-
reasoning QA across many domains. In industry and health-
care alike, it underpins fault diagnosis and clinical deci-
sions. On the factory floor, models must predict equipment
failure amid noisy data and jargon; one mistake can halt
production[16]. In hospitals, clinicians rely on it to answer
multi-hop questions from fast-evolving medical literature,
where any error can harm patients. These high-stakes set-
tings demand robust and interpretable question-answering
systems.

In response to the existing challenges, We use attention
to iteratively reason across steps and find the most likely
paths. Because real tasks often involve many hops, we keep
the top-three paths instead of the single best one. Their

entity–relation triples are then fed to a large model for a
second, redundancy-filtering pass, yielding more accurate
answers. Our main contributions can be summarized as
follows.

1. We propose a secondary reasoning question-answering
algorithm enhanced by large language models, utiliz-
ing attention mechanisms specifically for multi-hop
question answering.

2. We leverage the rich semantic understanding capabil-
ities of large models to conduct secondary reasoning
and correction on the top three ranked paths, thereby
reducing the issue of errors caused by excessive simi-
larity in model reasoning.

3. We have conducted extensive experiments on four
datasets, and the results demonstrate that our proposed
method exhibits strong generalizability and accuracy
in multi-hop question answering.

2. Related Works
2.1. Multi-hop knowledge-based question

answering
Early studies pointed out that the heterogeneous rep-

resentations of text and KG are a performance bottleneck.
KVMemNN[2] applied key–value memory for soft align-
ment, and SRN[3] later introduced an explicit search-and-
reason loop, yet both remained at the level of vector-space
mapping. To fully unify representations, KagNet[17] jointly
trains text-relation extraction with KG-path scoring, while
JointLK[18] couples text encoding and graph convolution

Li et al. 2



A Large-Model-Based Dual-Stage Reasoning QA Approach with Multi-Hop Path Selection

via differentiable logic for end-to-end alignment. More re-
cently, UniK-QA[19] proposes a “unified retrieval” frame-
work that linearizes text, tables, and KG into a single se-
quence processed by one Transformer, significantly improv-
ing cross-modal three-hop accuracy. Although current work
has gradually moved from alignment to unification, semantic
understanding remains limited for corpora rich in complex
and abstract terminology.

Large-scale knowledge graphs present twin challenges:
exploding neighborhoods and noisy edges. GraftNet[4] and
PullNet[5] adopt a “prune-then-expand” strategy, yet their
thresholds remain manual. R-GSN[20] employs reinforce-
ment learning to adaptively decide how many nodes to ex-
pand at each step, while SLEDGE[21] uses Monte-Carlo tree
search to locate paths within milliseconds on 10-million-
edge graphs. To combat noise, KG-BERT[22] first assigns
confidence scores to triples before feeding them down-
stream, and CogQA[23] leverages heterogeneous graph
attention to filter low-confidence edges. Nevertheless, these
models still suffer from limited semantic understanding; as
the number of hops grows, their performance drops, mak-
ing accurate reasoning over complex, multi-turn questions
elusive.

Traditional embedding methods lack human-readable
explanations. ReifKB[6] visualizes high-order relations with
hypergraphs, but interaction is limited. Path-based Attention
Flow[24] maps GNN attention back to the original sentence,
enabling a word-entity dual view. CausalKG-QA[25] intro-
duces causal intervention to identify and remove spurious
paths. Yet, current models generalize poorly: they perform
well on specific datasets but still struggle to provide reason-
able explanations when transferred to other domains.

2.2. Knowledge Reasoning with Large Models
With the emergence of large models, their powerful rep-

resentation learning capabilities have inspired scholars both
domestically and internationally to focus on methods that
combine knowledge graphs with large pre-trained models for
knowledge reasoning. For instance, KGATNs[26] introduce
attention mechanisms to optimize the information propaga-
tion process within knowledge graphs, allowing models to
focus on relationships or entities that are more critical to
the task. R-GCN[27] integrates relational information into
graph convolutional networks, capturing complex relation-
ship features between entities through specially designed
convolution operations. HAN[28] processes relationships
and entities of multiple types using heterogeneous atten-
tion mechanisms, making it suitable for complex hetero-
geneous knowledge graphs. GraphBERT[29] extends the
BERT model to graph-structured data, aggregating neighbor
information through graph neural networks while retaining
the pre-training advantages of BERT. K-Adapter[30] adapts
pre-trained large models to knowledge graph data by adding
adapter modules, enabling effective knowledge reasoning.
The combination of knowledge graphs with large pre-trained

models has demonstrated its strengths and potential in vari-
ous aspects, but it still faces challenges in terms of compu-
tational resource consumption and data dependency.

In recent years, strong reasoning models became a re-
search hotspot. Models like DeepSeek-R1[31] have achieved
breakthroughs in mathematical reasoning and programming
tasks, simulating human logical thinking and yielding excel-
lent results. OpenAI’s o1[32] model also excels in mathe-
matical and logical reasoning tasks by introducing advanced
reasoning mechanisms. To enhance the reasoning capabil-
ities of large language models (LLMs), researchers have
adopted three core strategies: prompt engineering, architec-
tural optimization, and learning paradigm improvements.
For example, in prompt engineering, Chain of Thought
(CoT)[33] helps models break down complex problems into
multiple smaller steps for step-by-step reasoning. In terms
of architectural optimization, Retrieval-Augmented Genera-
tion (RAG)[34] enhances the model’s memory capabilities,
while Neuro-Symbolic AI[35] combines deep learning with
symbolic logic to improve the reliability of reasoning. Cur-
rently, mainstream LLM reasoning frameworks are continu-
ously being optimized, with frameworks such as XInference,
LiteLLM, LMDeploy, SGLang, and vLLM constantly im-
proving. Concurrently, the open-source infrastructure index
provided by DeepSeek AI, including tools like FlashMLA,
DeepEP, and DeepGEMM, offers underlying acceleration
support for the performance enhancement of these reasoning
frameworks. Reasoning tasks based on large models can
leverage their advantages to achieve more accurate and re-
liable results.

3. Methodology
3.1. Attention-based Network

To address the multi-hop question answering tasks in di-
verse scenarios, we have developed an attention-based score
propagation method. This approach enables the model to
dynamically update and transfer the activation probabilities
of entities across multiple steps by focusing on different
parts of the question and computing the activation scores
of relationships in the relation graph. Initially, the model
initializes an entity score vector for the subject entity in the
question, assigning it a score of 1 while setting the scores
of all other entities to 0. In each step, the model attends
to different segments of the question to identify the most
relevant entity relationships. It then calculates the activation
scores for each relationship in the graph, which are based
on the current query context and propagate the entity scores
from the previous step along the activated relationships
to update the activation probabilities of the entities. This
process is iterated until the required number of hops for the
question is reached. Fig.1 illustrates the framework and the
reasoning process.

Represent the entity scores at step 𝑡 as a row vector
a𝑡 ∈ [0, 1]𝑛, where the values range between 0 and 1. a0
is the initial score vector, with only the subject entity 𝑒𝑥
having a value of 1. At step 𝑡, the query vector q𝑡 ∈ ℝ𝑑

is obtained, where 𝑑 represents the hidden dimension.The
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Figure 2: The framework and inference process of TNLLM.

steps for calculating the score attention are shown in (1).

q, (h1,⋯ , h
|q|) = Encoder(𝑞; 𝜃𝑒),

𝑞𝑘𝑡 = 𝑓 𝑡(𝑞; 𝜃𝑓 𝑡 ),

𝑏𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑞𝑘𝑡 ⋅
[

ℎ1;⋯ ;ℎ
|𝑞|
]⊤),

𝑞𝑡 =
|𝑞|
∑

𝑖=1
𝑏𝑡𝑖ℎ𝑖.

(1)

where 𝐪 is the embedding of the question, and 𝑓 𝑡 is the
projection function at step 𝑡. It maps q to a specific query
key q𝑘𝑡, through which the attention score for each word’s
hidden vector h𝑖 is calculated based on the query key.

As shown in (2), based on the query vector q𝑡, TNLLM
computes the relationship score matrix W𝑡 ∈ [0, 1]𝑛×𝑛,
where 𝜃𝑔 is the learnable parameters. Different 𝑔 need to
be provided for label forms and text forms. This function
outputs a matrix representing the transition probabilities
between entities.

W𝑡 = 𝑔(q𝑡; 𝜃𝑔) (2)

Next, we simulate the process of skipping edges through
(3), that is, by multiplying the entity score vector from
the previous step with the current step’s relationship score
matrix to update the entity scores, as shown in (4).

a𝑡 = a𝑡−1W𝑡 (3)

a𝑡𝑗 =
𝑛
∑

𝑖=1
a𝑡−1𝑖 ×𝑊 𝑡

𝑖,𝑗 (4)

Here, a𝑡 represents the entity score vector at step 𝑡, W𝑡 is
the relationship score matrix at step 𝑡, and 𝑎𝑡𝑗 is the score of
entity 𝑗 at step 𝑡.

After repeating 𝑡 times, we obtain the entity scores for
each step and then calculate their weighted sum as the final
entity scores, as shown in (5).

c = Softmax(MLP(q)),

a∗ =
𝑇
∑

𝑡=1
𝑐𝑡a𝑡,

(5)

where c is the distribution of the number of hops for the
question, 𝑐𝑡 is the probability of the 𝑡-th hop, and a∗ is the
final entity score vector. It can automatically determine the
number of hops to answer questions ranging from 1 hop to
𝑇 hops.

The transparency and interpretability of the TNLLM
model are among its key features. Through the aforemen-
tioned steps, it can reason about the relationships between
entities to find answers.

3.2. Secondary Reasoning Enhanced By LLM
Relying solely on relationship scores to find subgraphs

in a complex knowledge graph can lead to biases in multi-
hop question answering. The complexity of relationships in
the knowledge graph may cause important information to
be omitted or irrelevant information to be included in the
reasoning process when selecting subgraphs based solely on
relationship scores. This bias may lead to inaccurate answers
in the multi-hop reasoning process. To avoid such biases,
secondary reasoning can be performed using an enhanced
large model approach.
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Firstly, the top 3 nodes with the highest scores are
identified as shown in (6)

{a∗1, a
∗
2, a

∗
3} = 𝑇 𝑜𝑝3(𝑊𝑡) (6)

Next, all corresponding path triples are found as shown
in (7).

𝑃 = {𝐹 𝑖𝑛𝑑(a0, a∗1) ∪ 𝐹 𝑖𝑛𝑑(a0, a∗2) ∪ 𝐹 𝑖𝑛𝑑(a0, a∗3)} (7)

Finally, the triples are passed to the large model for
judgment as shown in (8).

𝐴 = LLM(𝑃 , 𝑞, 𝑞𝑡) (8)

3.3. Training Details
Based on the predefined standard answer set 𝑌 =

{𝑒𝑦1,⋯ , 𝑒𝑦|𝑌 |}, construct the target score vector y ∈ {0, 1}𝑛.
For each entity 𝑒𝑖, if it is part of the standard answer set 𝑌 , the
corresponding target score 𝑦𝑖 is set to 1; otherwise, it is set
to 0, as depicted in (9). This step ensures that the model has
a clear optimization objective during the training process.

𝑦𝑖 =

{

1, if 𝑒𝑖 ∈ 𝑌 ,
0, otherwise.

(9)

The Euclidean distance between the entity score vector
a∗ and the target score vector 𝐲 is utilized as the loss function
 to guide the training process, as shown in (10).

 = ‖a∗ − y‖. (10)

As the TNLLM model is fully differentiable, it can
effectively update model parameters to minimize the loss
function using gradient descent and other optimization al-
gorithms. This straightforward objective allows for learning
all intermediate scores, including question attention, relation
scores, and entity scores at each step.

3.4. Score Truncation And Language Masking
During the multi-hop reasoning process, as mentioned in

(4), the entity score 𝑎𝑡𝑗 may exceed 1. To avoid the problem
of gradient explosion, we truncate the entity scores after
each step to ensure they remain within the range [0,1], while
also maintaining the differentiability of the operation. A
truncation function is designed as shown in (11).

Trunc(𝑎) = 𝑎
𝑧(𝑎)

, 𝑧(𝑎) =

{

𝑎.detach(), if 𝑎 > 1,
1, if 𝑎 ≤ 1.

(11)

To address potential answer ambiguity issues in text-
based relationship graphs, a language masking mechanism
is introduced. By predicting the masking scores for each
entity and applying them to the final entity scores, the
model’s ability to capture key information in the question
is enhanced. The question embedding is used to predict the
masking scores for each entity. As shown in (12), where
m ∈ [0, 1]𝑛, 𝑚𝑖 represents the masking score of entity 𝑒𝑖,
and the multi-layer perceptron projects the 𝑑-dimensional
features to 𝑛-dimensions.

m = MLP(q), â∗ = m⊙ a∗ (12)

3.5. Calculation Of Relationship Scores
In the TNLLM model, the calculation of relationship

scores is one of the core steps, determining how the model
reasons along the correct relationship paths during the multi-
hop question answering process. This step involves matching
the information in the question with relationships in the
knowledge graph or textual corpus, thereby activating the
most relevant entities and updating their scores. The rela-
tionship scores calculated in this paper include both labeled
and textual forms.

In the labeled relationship graph, relationships are rep-
resented by a predefined vocabulary set  . A multi-layer
perceptron (MLP) is used to map the query vector 𝐪𝑡 into
the vocabulary space, and the Softmax function is applied to
obtain the probability of each word as shown in (13).

p𝑡 = Softmax(MLP(q𝑡)) (13)

For each entity pair (𝑒𝑖, 𝑒𝑗), according to its relationship
label set 𝑟𝑖,𝑗 = {𝑟𝑖,𝑗,1,⋯ , 𝑟𝑖,𝑗,𝑏}, the corresponding word
probabilities are collected as shown in (14), where 𝑏 repre-
sents the maximum number of relationships between entity
pairs.

W𝑡
𝑖𝑗 =

𝑏
∑

𝑘=1
𝑝𝑡𝑟𝑖,𝑗,𝑘 (14)

In the textual relationship graph, relationships are de-
scribed using natural language. The model first encodes each
relationship description 𝑟𝑖,𝑗,𝑘 using an encoder to obtain its
embedding representation, as shown in (15).

𝑟𝑖,𝑗,𝑘 = Encoder(𝑟𝑖,𝑗,𝑘; 𝜃𝑟) (15)

The relationship embedding is then element-wise multi-
plied with the query vector q𝑡, and the scores are calculated
using an MLP and Sigmoid function as shown in (16).

𝑝𝑡[𝑟𝑖,𝑗,𝑘] = Sigmoid
(

MLP(𝑟𝑖,𝑗,𝑘 ⊙ q𝑡)
)

(16)

For each entity pair, the scores of all relationship descrip-
tions are summarized to obtain the final relationship score
matrix W𝑡, as shown in (17).

W𝑡[𝑖, 𝑗] =
𝑏
∑

𝑘=1
𝑝𝑡[𝑟𝑖,𝑗,𝑘] (17)

Due to the potentially vast relationship graph in practical
applications, containing millions of relationship descrip-
tions, directly computing the embedding and scores for all
relationships is impractical. Therefore, this model adopts an
efficient strategy, where in each step, only the entities with
higher scores from the previous step are selected, and only
relationships originating from these entities are considered.
Additionally, if there are too many relationships that meet
the condition, only the top 𝜔 relationships with the highest
scores are retained.The pseudocode of our method is as
follows.
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Algorithm 1 TNLLM
Require: Relation graph 𝐺, which includes entity  and

relation , multi-hop question 𝑞, subject entity 𝑒𝑥, an-
swer enetity 𝑌 = {𝑒𝑦1 ,… , 𝑒𝑦|𝑌 |}, 𝑓 𝑡 is the project func-
tion step 𝑡, problem hop count 𝑇 , Truncation funciton
Trunc(𝑎).

Ensure: The answer of question 𝐴.
1: 𝑞, (ℎ1,… , ℎ

|𝑞|) = Encoder(𝑞; 𝜃𝑒), 𝑎0 = 1
2: for 𝑡 = 1 to 𝑇 do
3: 𝑞𝑘𝑡 = 𝑓 𝑡(𝑞; 𝜃𝑓 )
4: 𝑏𝑡 = Softmax

(

𝑞𝑘𝑡 ⋅ [ℎ𝑖,… , ℎ
|𝑞|]⊤

)

, 𝑞𝑡 =
∑

|𝑞|
𝑖=1 𝑏

𝑡
𝑖ℎ𝑖

5: 𝑊 𝑡 = 𝑔(𝑞𝑡; 𝜃𝑔), 𝑎𝑡 = 𝑎𝑡−1𝑊 𝑡, 𝑎𝑡′𝑗 =
∑𝑛

𝑖=1 𝑎
𝑡−1
𝑖 ×𝑊 𝑡

𝑖𝑗
6: 𝑎𝑡𝑗 = Trunc(𝑎𝑡′𝑗 )
7: end for
8: 𝑐 = Softmax(MLP(𝑞))
9: 𝑎∗ =

∑𝑛
𝑖=1 𝑐𝑡𝑎

𝑡

10:  = ‖𝑎∗ − 𝑦‖
11: 𝑚 = Sigmoid(MLP(𝑞)), 𝑎∗ = 𝑚 ⊙ 𝑎∗
12: {𝑎∗1, 𝑎

∗
2, 𝑎

∗
3} = Top3(𝑊𝑡)

13: 𝑃 =
(

Find(𝑎0, 𝑎∗1) ∪ Find(𝑎0, 𝑎∗2) ∪ Find(𝑎0, 𝑎∗3)
)

14: 𝐴 = LLM(𝑃 , 𝑞, 𝑞𝑡)
15: return 𝐴

4. Experiments
4.1. Datasets

We selected four datasets for our experiments, and the
standards of the datasets are shown in Table 1.

1. MetaQA[36]: The dataset is expanded from the Wiki-
Movies dataset and includes multi-hop questions. For
1-hop questions, there are 96,106 questions for the
training set, 9,992 for the validation set, and 9,947
for the test set; for 2-hop questions, there are 118,945
questions for the training set, 14,872 for the validation
set, and 14,872 for the test set; for 3-hop questions,
there are 114,196 questions for the training set, 14,274
for the validation set, and 14,274 for the test set.
Its knowledge graph comes from the movie domain,
containing 43,000 entities, 9 predicates, and 135,000
triples. In addition to the labeled form, the textual
form of the MetaQA dataset is extracted from the
WikiMovies textual corpus.

2. WebQSP[37]: The dataset is based on the Freebase
natural language question dataset. It includes 2,998
questions for the training set, 100 questions for the
validation set, and 1,639 questions for the test set.
The questions are either 1-hop or 2-hop in nature. The
knowledge graph comprises 1.8 million entities, 572
predicates, and 5.7 million triples. Due to its large
scale, the knowledge graph has been pruned.

3. ComWebQ[38]: The dataset is an expanded version
of WebQSP, incorporating additional hops and con-
straints. It contains 27,623 questions for the training
set, 3,518 questions for the validation set, and 3,531
questions for the test set. Subgraphs are retrieved for

Table 1

Dataset Statistics

Dataset Training Set Test Set Validation Set

MetaQA 1-hop 96,106 9,992 9,947
MetaQA 2-hop 118,948 14,872 14,872
MetaQA 3-hop 114,196 14,274 14,274
WebQSP 2,998 100 1,639
ComWebQ 27,623 3,518 3,531
FaultBS 3,000 314 314

each question using the PageRank algorithm, with an
average of 1,948 entities per subgraph and a recall rate
of 64%.

4. FalutBS: The dataset utilizes a large model-generated
industrial fault corpus, with 3,000 questions allocated
for the training set, 314 questions for the validation
set, and 314 questions for the test set. The knowl-
edge graph is derived from a large-scale industrial
knowledge base that has been constructed, comprising
relevant materials from professional books, enterprise
industry manuals, and online knowledge sources.

4.2. Baseline Method
To thoroughly validate the effectiveness of our model,

this paper selects 10 baseline methods, including KVMemNN
[2], VRN[9], SRN[3], GraftNet[4], PullNet[5], ReifKB[6],
EmbedKGQA[10], CBR-SUBC[11], BINET[7], Hic-KGQA
[8]. The following is an introduction to several of these
baseline methods.

1. KVMemNN: Utilizes a key-value memory network
to store knowledge and performs multi-hop reasoning
through iterative reading of memories.

2. VRN: The learner learns reasoning paths through
reinforcement learning, with intermediate results that
offer good interpretability.

3. SRN: Improves upon VRN by enhancing speed and
performance through constrained search and reward
shaping strategies.

4. GraftNet: Employs a heuristic method to extract sub-
graphs relevant to the question from the complete
relationship graph and uses neural networks to infer
answers.

5. PullNet: Builds upon GraftNet, learning to retrieve
subgraphs through graph convolutional networks.

6. ReifKB: Proposes an expandable labeled knowledge
base probability transmission method, which can be
considered a simplified version of TransferNet.

7. EmbedKGQA: Treats knowledge graph question an-
swering as a link prediction task and leverages knowl-
edge graph embedding to assist in predicting answers.

8. CBR-SUBC: Employs core technologies of case-
based reasoning and subgraph matching, identify-
ing similar subgraph structures in historical cases to
match the semantics and relationships of the current
question, thereby generating answers.
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9. BINET: Uses bidirectional reasoning and attention
mechanisms as core technologies, combining forward
and backward reasoning paths, starting from the sub-
ject entity of the question to gradually deduce possible
answers; and starting from the candidate answers to
verify their relevance to the question, optimizing the
reasoning results through bidirectional interaction.

10. Hic-KGQA: Utilizes meta-paths in hypergraphs to
model high-order relationships (such as multi-relational)
and optimizes the multi-hop question answering pro-
cess through reasoning chains.

4.3. Experimental Setup
1. Model Parameters: For MetaQA, the number of hops

is set to 3, with a bidirectional GRU encoder for
questions, featuring a hidden dimension of 1024. The
relation encoder also employs a bidirectional GRU,
with a threshold of 0.7 for selecting relations, consid-
ering up to 400 relations. For WebQSP, ComWebQ,
and FalutBS, the number of hops is set to 2, with the
question encoder pre-trained as BERT and fine-tuned
for the task.

2. Training Details: The optimizer is Adam, with a
learning rate of 0.001, and the training consists of
20 epochs. In terms of training time, on an NVIDIA
1080Ti GPU, the labeled format requires approxi-
mately one day, while the textual format takes slightly
longer.

3. Evaluation Metrics: The primary evaluation metric
is Hits@1 (the accuracy of top-1 predictions).

5. Results
5.1. Experimental Results of Labeled Formats

Table 2 presents the experimental results of various mod-
els on the labeled format of the MetaQA dataset. MetaQA
is a large-scale multi-hop question answering dataset, com-
prising over 400,000 questions covering tasks up to three
hops. Our method achieved an accuracy of 97.5% on 1-
hop questions, which is comparable to four existing mod-
els; on 2-hop questions, it reached 100% accuracy, signif-
icantly outperforming other models; on 3-hop questions,
it also achieved 100% accuracy, nearly solving all multi-
hop question answering tasks on this dataset. Since, aside
from the model proposed in this paper, four baseline mod-
els also achieved the highest accuracy, and the values are
numerically identical, we analyzed the errors in their 1-hop
questions. The errors stem from the ambiguity of entities.
For instance, when asked about the lead actors of a movie,
the knowledge graph might contain two movies with the
same title but different release years. However, the standard
answer provided by the MetaQA dataset only lists the 1920
version, leading to this unavoidable mismatch. Additionally,
the two highest baseline models were similarly affected by
the accuracy of the dataset. In the 2-hop and 3-hop stages,
the ambiguity was eliminated through relational constraints.

Table 2

Hits@1 Experimental results MetaQA datasets

Methods 1-hop 2-hop 3-hop

KVMemNN 95.8 25.1 10.1
VRN 97.5 89.9 62.5
GraftNet 97.0 94.8 77.7
PullNet 97.0 99.9 91.4
SRN 97.0 95.1 75.2
ReifKB 96.2 81.1 72.3
EmbedKGQA 97.5 98.8 99.3
CBR-SUBC 97.5 99.8 99.2
BINET 97.0 99.8 99.0
Hic-KGQA 97.5 99.9 99.3
TNLLM(Ours) 97.5 100.0 100.0

Table 3

Hits@1 Experimental results on di�erent datasets

Methods WebQSP ComWebQ FalutBS

KVMemNN 46.7 21.1 34.7
GraftNet 66.4 32.8 39.8
PullNet 68.1 47.2 49.5
ReifKB 52.7 � �
EmbedKGQA 66.6 � 44.8
CBR-SUBC 70.1 48.3 49.2
BINET 69.2 48.3 49.5
Hic-KGQA 70.8 50.9 49.7
TNLLM(Ours) 71.5 51.1 63.8

As the number of hops increases to two, performance
differences among models begin to emerge. The accuracy of
KVMemNN drops significantly to 25.1%, indicating its lim-
ited capability in handling multi-hop reasoning. In contrast,
models such as PullNet, CBR-SUBC, BINET, Hic-KGQA,
and TNLLM achieve accuracies around 99%, with TNLLM
reaching 100%, demonstrating that these models have more
effective mechanisms for multi-hop reasoning, capturing the
associations between questions and entities and relationships
within the knowledge graph. When it comes to three-hop
questions, this disparity further widens, with TNLLM’s
accuracy still reaching 100%, suggesting that TNLLM can
accurately find answers to complex multi-hop questions
through a more rational architecture, more effective reason-
ing strategies, and a deeper understanding of the knowl-
edge graph. The performance results of TNLLM and other
baseline models on the WebQSP, ComWebQ, and FaultBS
datasets are shown in Table 3. On the WebQSP dataset for
two-hop questions, the accuracy reaches 71.5%, significantly
outperforming the previous best models.

CompWebQ includes more hops and constraint condi-
tions, achieving an accuracy of 50.8% on 2-hop questions,
outperforming PullNet’s 47.2%. Despite the increased com-
plexity of CompWebQ’s questions, TNLLM still demon-
strates excellent performance, further proving its advan-
tage in multi-hop question answering tasks. The Hic-KGQA
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Table 4

Experimental results in textual form

Methods MetaQA Text MetaQA Text+50% Label

1-hop 2-hop 3-hop 1-hop 2-hop 3-hop

KVMemNN 75.4 7 19.5 75.7 48.4 35.2
GraftNet 82.5 36.2 40.2 91.5 69.5 66.4
PullNet 84.4 81.0 78.2 92.4 90.4 85.2
TNLLM (Ours) 95.8 98.2 94.5 96.2 98.6 94.7

method utilizes a hypergraph completion module to gener-
ate multi-sense embeddings of entities, complementing the
implicit relationships in the knowledge graph. Hypergraphs
allow a single edge to connect multiple entities, flexibly
representing complex relationships, and combining entity
embeddings with symbolic reasoning enhances the ability to
handle long paths and complex constraints, yielding particu-
larly advantageous results on CompWebQ. However, it also
faces the significant challenge of high computational costs
associated with hypergraph construction. Although TNLLM
does not achieve the highest accuracy, its performance is
still leading compared to other baseline models. On the
FaultBS dataset, TNLLM’s accuracy is also optimal com-
pared to other baseline models, with a noticeable gap in
performance, reflecting its ability to handle the challenges
of professional terminology and complex entity relationship
networks in refrigeration industrial scenarios. TNLLM can
dynamically allocate weights through attention mechanisms,
accurately capturing semantic information in specific ques-
tions and knowledge graphs, deeply understanding the ques-
tion’s meaning and related entity relationships, thus pro-
viding accurate basis for subsequent reasoning. In complex
entity-relation networks, TNLLM first analyzes the question.
Next, it plans a concise reasoning path on the fly. By skip-
ping irrelevant nodes, it speeds up the search and Selects
the answer closest to the facts.For instance, when dealing
with refrigeration system fault diagnosis, it quickly locates
entities and relationships related to the fault, reducing unnec-
essary search and computation. Combining previous results,
this model not only enhances accuracy in specific domains
but also demonstrates certain generalizability in industrial
fields.

5.2. Experimental Results of Textual Formats
As shown in Table 4, TNLLM was compared with sev-

eral models capable of handling textual relationship formats.
TNLLM demonstrated superior performance over the other
models, particularly on 2-hop and 3-hop questions, improv-
ing accuracy from 81.0% to 98.2% and from 78.2% to 94.5%,
respectively. PullNet and GraftNet both infer answers by
implicitly aggregating graph features, thus failing to provide
intermediate relationship paths. This indicates that TNLLM
is not only suitable for labeled relationship graphs but can
also effectively process relationship graphs based on natural
language descriptions.

To comprehensively explore the impact of integrating
labeled and textual information on TNLLM’s performance,

this paper designed and conducted comparative experiments
in mixed formats. Specifically, 50% of the labels were ran-
domly sampled from the dataset and structured into triples,
which were then integrated into the text-based relationship
graph. When processing mixed data, predicates were parsed
as word statements, and their semantic features were deeply
mined and encoded using a relationship encoder, achieving
effective integration of heterogeneous information. The ex-
perimental results showed that using a 50% label-mixed-text
input strategy significantly improved TNLLM’s key perfor-
mance metrics compared to pure textual input formats. This
result fully validates the model’s excellent compatibility in
handling multi-source heterogeneous information, proving
its ability to efficiently integrate structured knowledge from
labels with semantic information from text, thereby enhanc-
ing the model’s performance in complex reasoning tasks.

5.3. Ablation Study
1. Without Score Truncation: After removing the score

truncation module, the model’s accuracy in labeled
format dropped from 99.4% to 94.7%, and in tex-
tual format, it plummeted from 95.8% to 75.3%. In
textual format, data complexity and uncertainty are
higher, potentially leading to greater numerical fluctu-
ations and an increased risk of gradient explosion. The
score truncation module reasonably constrains scores
to prevent excessive growth and mitigates gradient
explosion issues, ensuring model training stability and
effectiveness. Without this module, the model may
become unstable and struggle to learn and predict
accurately, resulting in a sharp decline in accuracy.
This demonstrates that in textual format, the score
truncation module is crucial for maintaining model
performance.

2. Without Language Masking: After eliminating the
language masking module, the model’s accuracy in
textual format plummeted from 95.8% to 62.1%.
When processing textual relationships, the text con-
tains a significant amount of ambiguous or polyse-
mous information that can interfere with the model’s
judgment of the correct answer. The language mask-
ing module filters key information from the text and
shields against factors that may lead to incorrect
judgments, helping the model focus more accurately
on content related to the correct answer. Without the
language masking module, the model cannot effec-
tively filter out incorrect answer-related information,
and under the influence of numerous distractions,
it struggles to accurately deduce the correct result,
leading to a substantial drop in accuracy. This fully
illustrates that the language masking module signifi-
cantly enhances the model’s accuracy when process-
ing textual format data and is essential for model
performance optimization.

3. Without Auxiliary Loss: After removing the aux-
iliary loss, the model’s accuracy in labeled format
dropped from 99.4% to 98.6%, and in textual format,
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Table 5

Results of ablation experiment

Methods Labeled Format Textual Format

w/o score truncation 94.7 75.3
w/o language mask � 62.1
w/o auxiliary loss 98.6 94.1
w/o LLM 95.2 78.2
TNLLM 99.4 95.8

it decreased from 95.8% to 94.7%. Auxiliary loss
provides additional supervision during the model’s
learning process, guiding the model to focus more on
key aspects of the reasoning path. For instance, in
hop prediction helps the model better understand the
depth and steps required for the question, allowing the
model to more rationally plan reasoning paths when
exploring entity relationships in the knowledge graph,
avoiding ineffective or incorrect branches. Without
auxiliary loss, the model lacks this extra guidance,
leading to less precise learning of reasoning paths and
consequently limited overall performance improve-
ment, resulting in a certain degree of accuracy decline.
This shows that auxiliary loss actively promotes bet-
ter learning of reasoning paths and enhances model
performance.

4. Without Large Model Secondary Reasoning: After
removing the large model secondary reasoning step,
the model’s accuracy in labeled format dropped from
99.4% to 95.2%, and in textual format, it decreased
from 95.8% to 78.2%. Large model secondary rea-
soning is not a redundant operation; it deeply verifies
and optimizes the initial reasoning results. During the
initial reasoning process, the model may produce in-
accurate results due to various reasons (such as noise,
local inaccuracies in the knowledge graph, etc.). Large
model secondary reasoning, with its strong language
understanding and reasoning capabilities, comprehen-
sively reviews the initial results, supplements missing
information, corrects erroneous reasoning, and thus
derives more accurate and reliable answers. Without
large model secondary reasoning, the model loses this
important verification and optimization mechanism,
significantly affecting accuracy and making it difficult
to achieve higher levels. This clearly indicates that
large model secondary reasoning plays an indispens-
able role in improving model accuracy.

In summary, each module of TNLLM plays a key role in
enhancing the model’s accuracy from different perspectives,
working together to ensure the model’s high performance.

5.4. Efficiency Experiment
We conducted experiments to verify the advantages of

TNLLM in terms of data efficiency and convergence speed,
demonstrating its ability to achieve excellent performance
with less data and faster speeds during training. As shown

Figure 3: Chart of Experimental Results on Data E�ciency.

in Figure 3, the x-axis represents the proportion of train-
ing data , and the y-axis represents the average Hits@1
accuracy. When using 10% of the training data, TNLLM’s
accuracy is almost identical to that achieved with the full
training set (nearly 100%), while the accuracy of SRN and
EmbedKGQA is significantly lower than that of TNLLM.
This indicates that TNLLM can learn effective reasoning
patterns with a small amount of data, reducing reliance on
large-scale labeled data. As the proportion of training data
increases, the TNLLM proposed in this paper consistently
maintains high accuracy without overfitting or performance
fluctuations, indicating its robust generalization capabilities
due to model design elements such as attention mechanisms
and score propagation.

6. Conclusion
In response to the complexity and multi-hop character-

istics of knowledge within specialized domains, we propose
an enhanced secondary reasoning question-answering algo-
rithm based on large language models. The algorithm works
in two clear stages. First, it uses attention mechanisms to
iteratively explore possible paths across multiple reasoning
steps. Second, it leverages the rich semantic understanding
of large models to perform a secondary round of reason-
ing on the top-three ranked paths. Together, these stages
significantly improve the accuracy of multi-hop question
answering. Extensive experiments on multiple datasets have
validated the effectiveness of this approach. Our work is ap-
plicable to practical scenarios, particularly in industrial fault
diagnosis and intelligent medical services in the healthcare
sector—domains where the volume of knowledge is vast and
accuracy is of utmost importance.

Future work can be expanded and deepened in sev-
eral directions. First, we aim to further optimize the sec-
ondary reasoning algorithm to improve reasoning efficiency
and accuracy. We will explore more advanced models and
technologies, such as deep learning and natural language
processing, to better address complex reasoning tasks in
specialized domains. In addition, we plan to continuously
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expand and update the knowledge graph by incorporating
more entities, relationships, and attributes. We will also
consider integrating additional data sources, such as expert
knowledge and industry standards, to enrich the content and
structure of the knowledge graph.
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