
Journal of Artificial Intelligence Research, vol. 2, no.2, pp. 12-23, 2025PFGL-Net: A Personalized Federated Graph Learning Framework for
Privacy-Preserving Disease Prediction
Ziming Doua, Guangqing Baia, Zhuoyang Hanb, Wei Lic and Yinghua Lid,∗

aSchool of Computer Science and Technology, Dalian University of Technology, Dalian, China
bSchool of Software Technology, Dalian University of Technology, Dalian, China
cGanjiang Chinese Medicine Innovation Center, Nanchang, China
dDepartment of Oncology, The Second Hospital of Dalian Medical University, Dalian, China

A R T I C L E I N F O
Keywords:
dynamic data quality factors
local fine-tuning
federated graph learning

A B S T R A C T
With the proliferation of multi-center medical data, achieving privacy-preserving cross-institutional
collaboration poses a pivotal challenge for smart healthcare. However, conventional federated learning
struggles with non-IID data distributions, graph structural degradation, and inadequate personaliza-
tion. Existing approaches employ client clustering and federated knowledge distillation to address
non-IID data challenges. However, while attempting to mitigate these issues, current methods still
encounter persistent limitations, including cross-domain transfer failure, degraded prediction accuracy
under high missing data ratios, and performance deterioration when handling dynamically evolving
data distributions. This paper proposes PFGL-Net, a novel disease prediction framework based
on personalized federated graph learning, which leverages dual-dimensional dynamic data quality
factors and local fine-tuning techniques to enable efficient privacy-preserving collaborative training.
Specifically, the proposed framework innovatively combines dynamic quality evaluation and graph-
structured learning within a federated system, delivering a comprehensive solution that balances
privacy preservation, prediction accuracy, and personalized adaptation. Experimental results on the
MIMIC-III dataset demonstrate superior performance over baseline methods, with significant im-
provements in evaluation metrics and convergence speed. Furthermore, the algorithm exhibits robust
generalization capabilities, outperforming baselines on the Cora and DBLP benchmark datasets.

1. Introduction
In the contemporary information-driven society, the ten-

sion between data privacy preservation and computational
efficacy has become increasingly acute. The rapid advance-
ment of artificial intelligence and big data technologies has
intensified data dependency across sectors. However, cen-
tralized data storage and processing not only incur risks of
privacy breaches but also constrain model training effective-
ness due to data silos. Federated learning (FL), a distributed
machine learning framework, enables collaborative training
among multiple participants without sharing raw data. This
paradigm enhances model generalizability while safeguard-
ing data privacy. However, conventional FL methodologies
typically assume participant data adheres to an Independent
and Identically Distributed (IID) premise–an assumption
often untenable in real-world scenarios. This is particularly
evident in healthcare, where disparate medical institutions
exhibit heterogeneous data distributions. Variations exist
in patient demographics, diagnostic records, and genomic
data profiles across hospitals. Such Non-IID characteristics
pose significant challenges to traditional FL in terms of
convergence rate and predictive performance. Consequently,
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optimizing FL performance in Non-IID data environments
constitutes a pivotal research frontier.

Accelerating global population aging imposes severe
pressures on chronic disease management systems. World
Health Organization (WHO) reports project that individuals
aged 60+ will constitute 22% of the global population by
2050–double the current proportion–with 75% of elders
managing at least one chronic condition [1]. Within this
context, AI-powered disease prediction technologies emerge
as crucial for optimizing healthcare resource allocation and
enabling precision health management. However, traditional
FL implementation in healthcare encounters three major
challenges:

Firstly, Non-IID data, characterized by feature distribu-
tion skew, label distribution skew, class distribution skew,
and quantity skew, represents a fundamental challenge.
Healthcare exemplifies this heterogeneity: patient cohorts
vary substantially across hospitals, with some specializ-
ing in specific conditions while others encompass broader
pathologies. This impedes equitable model performance
across participants and complicates convergence due to
divergent local gradient updates undermining global model
stability.Medical data heterogeneity manifests both inter-
institutionally and intra-institutionally. Research indicates
that FedAvg algorithm accuracy declines sharply by 37%
when inter-client data divergence exceeds a threshold [2],
inducing significant performance degradation at edge nodes.

Secondly, current FL frameworks primarily target tab-
ular or imaging data, neglecting inherent complex graph
relationships in medical data (e.g., patient-symptom-drug
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interactions, comorbidity networks). Directly applying tra-
ditional FL disrupts topological features, causing predictive
models to forfeit critical semantic information.

Thirdly, medical decision-making necessitates high per-
sonalization, yet monolithic global FL models struggle to
adapt to individual patient characteristics.

Personalized Federated Learning (PFL), a significant
FL branch, adapts global models to local data distributions
through personalized parameters or architectural modifica-
tions. Recent PFL advances in healthcare, financial risk
control, and recommender systems demonstrate its potential.
However, existing PFL methods encounter substantial chal-
lenges with Non-IID data. Heterogeneity can introduce in-
formational bias during model aggregation, impairing global
convergence and stability. Balancing global consistency with
sufficient local flexibility for distributional adaptation re-
mains complex. Moreover, disease prediction relies on com-
plex multi-modal data (EHRs, genomics, imaging), which
exhibit both high heterogeneity and Non-IID properties.
Thus, designing efficient PFL methods for Non-IID envi-
ronments to enhance prediction accuracy and robustness is
imperative.

This paper focuses on optimizing PFL performance in
Non-IID contexts. Specifically, we propose a dual-dimensi-
onal dynamic Data Quality factor (DQ)-based PFL method
to mitigate Non-IID training difficulties. Integrating a dy-
namic data quality assessment mechanism, it adaptively ad-
justs model updating strategies according to client data dis-
tributions, enhancing global predictive performance while
preserving privacy. Concurrently, personalized parameter
optimization enables precise disease prediction while re-
taining local data characteristics. The experimental results
demonstrate the effectiveness of our model. The main con-
tribution of this paper can summarized as follows:

• Dual-Dimensional Dynamic Data Quality Factor for
Non-IID Data. This paper is the first to propose a dual-
dimensional dynamic Data Quality (DQ) factor-based
personalized federated learning method, which breaks
through the theoretical limitations of traditional static
weight allocation strategies in dynamic Non-IID envi-
ronments and provides a new perspective for optimiz-
ing federated learning in Non-IID scenarios.

• PFGL-Net: Integrating Dynamic Evaluation and Graph
Learning. The paper designs the PFGL-Net frame-
work, which integrates dynamic data quality evalu-
ation and graph-structured learning into a federated
system. It implements dynamic data quality factors
through a dual-dimensional (performance and struc-
tural integrity) evaluation mechanism with exponen-
tial smoothing correction, and combines with hierar-
chical aggregation and local fine-tuning techniques to
achieve personalized federated learning.

• Experimental Validation of Effectiveness. Extensive
experiments on MIMIC-III, Cora, and DBLP datasets
show that PFGL-Net outperforms baseline methods in

terms of Micro-F1 score and convergence speed, with
significant improvements in disease prediction tasks
and robust generalization capabilities. Ablation stud-
ies further verify the effectiveness of core components
like dynamic DQ factors and local fine-tuning.

2. Related Works
2.1. Federated Optimization Algorithm

Frameworks
The foundational optimization framework for federated

learning is exemplified by the Federated Averaging (Fe-
dAvg) algorithm [3]. FedAvg operates on the principle of
distributed model training through an iterative collaborative
approach of local client training combined with global server
aggregation, while preserving data privacy. Specifically, par-
ticipating devices perform multiple rounds of Stochastic
Gradient Descent (SGD) using local data before uploading
updated model parameters (or gradients) to a central server.
The server aggregates these local updates, typically through
simple weighted averaging [4], to form a new global model
that is then redistributed to clients for the next iteration.
This approach prevents raw data from leaving local devices,
thereby protecting user privacy.

However, FedAvg’s effectiveness critically depends on
the assumption that client data follows an Independent and
Identically Distributed (IID) pattern [5]. To address Fe-
dAvg’s susceptibility to drift under Non-IID conditions,
researchers have proposed various improvements. The Fed-
Prox algorithm [6] introduces an explicit 𝜇-proximal reg-
ularization term into the local training objective, pulling
updates toward the global model and significantly miti-
gating client drift. FedOpt [7] adopts a different approach
by incorporating momentum mechanisms at the server to
update the global model. This momentum compensation
enhances system resilience against client asynchrony, effec-
tively suppressing parameter update oscillations caused by
uneven device states [8]. FedNova [2] employs an innova-
tive approach: normalizing the magnitude of local updates
before aggregation. This adjustment improves the system’s
adaptability to client data heterogeneity, with theoretical
analyses even demonstrating orders-of-magnitude improve-
ments in convergence speed over FedAvg. For more compre-
hensive results, the hybrid optimization framework FedHy-
brid combines the strengths of “proximal constraints” and
“momentum compensation”. This fusion strategy exhibits
strong resilience in extreme Non-IID scenarios, maintaining
convergence efficiency at 92% [9].

Beyond model performance, communication overhead is
another major challenge in federated learning. To address
this, quantized communication techniques like Q-FedAvg
[10] have been proposed. The core idea involves highly
compressing uploaded model updates through “ternary spar-
sification”, reducing bandwidth requirements to 1/16 of the
original. In mobile network deployments, this quantization
significantly reduces latency. Finally, regarding the trade-off
between communication and local computation in federated
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learning, setting the number of local iterations to 5 yields
optimal system efficiency across a wide range of scenarios–
a conclusion validated in large-scale federated facial recog-
nition training.
2.2. Personalized Federated Learning (PFL)

Due to the inherent Non-IID nature of data, using a single
global model for all client devices often yields suboptimal
results. To address this issue, PFL has emerged as a key
approach, which tailors individual models to each client’s
local data, with a variety of technical strategies having been
formulated.

Firstly, the parameter decoupling strategy partitions
models into “shared” and “private” components. Typically,
the model’s foundational layers participate in federated
aggregation to maintain a unified global base, while upper
layers remain local for personalized fine-tuning [11]. More
sophisticated implementations use “gradient masking” to
calculate relative importance scores for parameter updates
across layers. Another flexible approach employs “hyper-
network architectures” [12]–a central server maintains a
generator network G that takes low-dimensional latent vec-
tors representing specific clients as input and dynamically
produces customized model parameters.

The second strategy, federated knowledge distillation
(FedKD) [13], cleverly avoids direct parameter transmission
by having clients exchange soft probability distributions of
model outputs. These soft labels guide local model train-
ing, enabling indirect knowledge transfer. On CIFAR-100
under simulated heterogeneous conditions, FedKD boosted
personalized model accuracy by 9.8% [14].

The third approach involves client clustering to balance
personalization and collaboration efficiency by grouping
clients with similar data distributions. This technique has
evolved from static grouping (e.g., using K-means++ [15]
for initial clustering) to dynamic adaptive clustering [16]
that continuously optimizes similarity metrics through meta-
learning, adjusting groups during training. Multi-objective
co-clustering [17] further incorporates global distribution
considerations (e.g., via inter-group KL divergence).

Privacy-efficiency tradeoffs are crucial in personalized
federated learning. Studies quantified the cost of differential
privacy (DP) [18]–with strong privacy budgets, accuracy
decreased by only 3.2% across 1,000 clients, demonstrating
practical viability. For multi-task scenarios, frameworks like
MOCHA [19] use task covariance matrices to decouple
shared and task-specific information, enabling collaborative
solutions. In multi-center medical diagnostics, MOCHA im-
proved model AUC by 0.11 [20].

3. Method
3.1. Overall Design
3.1.1. Client Module

In the federated graph neural network system design,
modules form an integrated whole through sophisticated
coordination mechanisms. The system starts with data pre-
processing to first address the heterogeneity of raw graph

data. Using an ego-network-based sampling [21] strategy,
each client extracts local subgraphs centered on specific
nodes from the global graph.

This k-hop neighborhood expansion method preserves
graph structural features while inherently aligning with the
distributed nature of federated learning. The data loader
intelligently identifies graph scale: for small graphs, com-
plete adjacency matrices are stored, while for large graphs,
random walk forest compression is activated. This adaptive
strategy reduces system memory usage by over 60% [22].

Concurrently in the feature engineering phase, node
feature standardization and adjacency matrix normalization
are performed as shown in formulas, providing numerically
stable input for subsequent model training. The data par-
titioning module employs a dual-mode design, supporting
both conventional uniform partitioning and non-IID parti-
tioning based on Dirichlet distribution [23].

The latter controls data distribution skew through the
concentration parameter 𝛼. When 𝛼 = 0.5, it maintains
data diversity while avoiding extreme imbalance. Metadata
generated during partitioning is persistently stored, enabling
rapid reconstruction of partition states [24] without recalcu-
lation when new clients join. This design significantly en-
hances system resilience. Each client periodically evaluates
local data quality metrics such as graph structural integrity
and class balance, with these assessments becoming critical
parameters for federated aggregation.

The training process utilizes a classical optimization
algorithm framework. The system dynamically selects either
SGD or Adam optimizers based on configuration [25], sup-
porting customizable learning rates and weight decay coef-
ficients. During each training iteration, the trainer batches
input data, computes predictions through forward propaga-
tion, then updates parameters via backpropagation based on
loss functions. Notably, a dynamic batching strategy auto-
matically adjusts batch sizes according to device memory
capacity, significantly improving memory efficiency.

The model evaluation module features a robust testing
procedure. During evaluation, models switch to inference
mode to avoid unnecessary computational overhead. By con-
structing confusion matrices, the system comprehensively
analyzes model performance across classes. A specially
designed Micro-F1 calculation algorithm incorporates nu-
merical stabilization mechanisms [26] to prevent division-
by-zero errors. This granular evaluation provides researchers
with in-depth performance analysis tools.

The trainer implementation incorporates multiple engi-
neering optimizations. For device management, the system
intelligently allocates models and data to specified comput-
ing devices. The logging system uses tiered output to ensure
critical information recording while avoiding performance
degradation from redundant outputs. Key training metrics
can be monitored in real-time through an experiment man-
agement platform, greatly enhancing debugging efficiency.

A notable characteristic of this trainer is its extensibility.
By inheriting the base client trainer class, the system can
readily incorporate new training strategies and evaluation
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metrics. Optimizer configurations and training hyperparam-
eters support runtime adjustments, enabling rapid experi-
mentation with different training schemes. This flexible ar-
chitecture lays solid groundwork for future functional expan-
sion. Regarding performance, the implementation is metic-
ulously optimized for efficient large-scale graph processing.
Through batching techniques and device-aware computing,
the system achieves high computational throughput while
maintaining low memory footprint.
3.2. Dynamic Data Quality Factor

The experiment demonstrates that during the evolution
of federated learning systems, the heterogeneity and dy-
namic variations in client data quality persistently constitute
a core challenge constraining model convergence efficiency.
Traditional solutions predominantly adopt static weight al-
location strategies, where the number of client samples or
data distribution similarity serves as fixed weighting cri-
teria. While such approaches can ensure convergence in
idealized Independent and Identically Distributed scenarios,
they struggle to address the prevalent Non-IID data and
client state drift issues in real-world settings.To overcome
this bottleneck, this study innovatively proposes the Dy-
namic Dual-dimensional Data Quality Factor (DQ Factor).
By establishing a performance-structure dual-dimensional
dynamic evaluation framework, it constructs an environmen-
tally adaptive federated aggregation mechanism. This mech-
anism not only breaks through the theoretical limitations
of conventional methods in dynamic environments but also
incorporates comprehensive stability guarantee strategies at
the engineering implementation level, ultimately delivering
a solution that balances mathematical rigor with system
robustness.

From a theoretical construction perspective, the DQ
Factor’s core innovation lies in decoupling two orthogonal
feature spaces for client evaluation: the Performance Di-
mension and the Structural Integrity Dimension. The per-
formance dimension is quantified through the local model’s
Micro-F1 score on the validation set–a metric integrating
the multiplicative relationship between precision and recall,
mathematically expressed as follows:

F1 Score = 2 ⋅ Precision ⋅ Recall
Precision + Recall

Precision = TP
TP + FP

Recall = TP
TP + FN

(1)

where TP, FP, and FN represent the numbers of true posi-
tive, false positive, and false negative samples, respectively.
Compared to traditional accuracy metrics, the micro-F1
score demonstrates superior discriminative power in class-
imbalanced data. The missing rate is introduced as a quanti-
tative indicator, whose calculation process does not simply
involve counting the proportion of missing values but rather
constructs a weighted evaluation model based on feature

importance:

MissingRate = 1 −
𝐷
∏

𝑑=1

(

1 − 𝜔𝑑 × 𝑝miss(𝑑)
) (2)

where 𝑝miss(𝑑) represents the missing probability of the d-
th feature dimension, and 𝜔𝑑 denotes the feature impor-
tance weight of this dimension in the target model, which
is dynamically calibrated through SHAP values (SHapley
Additive exPlanations). This design enables the structural
dimension assessment to accurately reflect the actual impact
of data missingness on the model’s decision boundaries. The
evaluation results from both dimensions are subsequently in-
tegrated via a nonlinear transformation function, ultimately
forming the dynamic data quality factor.

DQ(𝑡)
𝑘 = (Perf (𝑡)𝑘 )𝛽1 × (1 − MissingRate𝑘)𝛽2 (3)

The parameters 𝛽1 and 𝛽2 function as dimensional reg-
ulators in this context: when 𝛽 > 1, the quality assessment
results of the corresponding dimension exhibit a supralinear
amplification effect. This characteristic enables system ad-
ministrators to flexibly adjust evaluation strategies based on
domain knowledge. In specialized medical scenarios where
data timeliness is paramount, the exponential weighting sig-
nificantly modulates dimensional proportions - for instance,
when patient conditions exhibit substantial fluctuations, the
performance dimension can be further amplified to enhance
its regulatory effect.However, DQ factor calculations within
a single training cycle remain vulnerable to local stochastic
fluctuations among clients. A typical example would be
temporary data quality degradation caused by intermittent
failures in medical data acquisition equipment. To mitigate
such transient disturbances, this study introduces an expo-
nential smoothing correction mechanism, mathematically
expressed as (4).

DQ
(𝑡)
𝑘 = 𝛼 × DQ(𝑡)

𝑘 + (1 − 𝛼) × DQ
(𝑡−1)
𝑘 (4)

The smoothing coefficient 𝛼 ∈ (0, 1) governs histori-
cal memory intensity, where smaller values suit scenarios
with stable client performance - ensuring weight allocation
stability through long-term memory - while larger values
accommodate rapidly evolving data distributions, enabling
swift system response to emerging state changes. This dy-
namic equilibrium mechanism effectively resolves weight
allocation biases caused by sporadic client performance
anomalies that plague traditional methods. Particularly in
medical contexts, the system can fine-tune 𝛼 according to
scenario-specific requirements to accommodate diverse op-
erational conditions.

Going further, through an adaptive𝛼-regulation algo-
rithm design, the system automatically triggers gradient
updates to 𝛼 when monitored client performance fluc-
tuation Δ𝑃𝑒𝑟𝑓 exceeds predetermined thresholds as (5),
where𝜂represent for learning rate.

𝛼new = min
(

𝛼old + 𝜂 × |ΔPerf|, 0.9) (5)
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The update rule for the client-side DQ Factor is as
follows:
Algorithm 1 Dynamic DQ Factor Update

UPDATE-CLIENT-DQ(𝑐, 𝑝, 𝑚) {Client ID,
performance, missing rate}

𝑝[𝑐] ← append(𝑝[𝑐], 𝑝) {Update performance his-
tory}

𝑚[𝑐] ← append(𝑚[𝑐], 𝑚) {Update missing rate
history}

𝐷𝑄 ← 𝑝𝛽1 × (1 − 𝑚)𝛽2 {Compute current DQ}
if 𝑐 ∈  then

[𝑐] ← 𝛼𝐷𝑄+(1−𝛼)[𝑐] {Exponential smooth-
ing}

else
[𝑐] ← 𝐷𝑄 {Initialize new client}

end if
return [𝑐]

3.3. Implementation of Personalized Federated
Learning

The effective application of DQ factors requires deep
integration with federated aggregation algorithms. The pro-
posed hierarchical aggregation framework in this study con-
sists of three core modules:
Algorithm 2 Hierarchical Federated Aggregation

AGGREGATE(𝑅) {Client results 𝑅 = {𝑟1, ..., 𝑟𝑛}}
 , ← ∅ {Initialize weights and models}
for 𝑟 ∈ 𝑅 do

𝑤 ← UPDATECLIENTDQ(𝑟.id, 𝑟.𝑝, 𝑟.𝑚) {Get DQ
weight}

 ←  ∪ {𝑤}
 ←  ∪ {𝑟.model}

end for

 ← NORMALIZE() {Weight normalization}
𝜃𝑔 ← SERVERMODELSTATE() {Get global parame-

ters}
for 𝑘 ∈ keys(𝜃𝑔) do

if 𝑘 ∉ personal then
𝜃𝑔[𝑘] ←

∑

||

𝑖=1  𝑖 ⋅ 𝑖[𝑘] {DQ-weighted
average}

end if
end for

if enable_wandb then
 ← {𝑖[personal[1]] ∣ 1 ≤ 𝑖 ≤ 𝑛}
LOGHISTOGRAM() {Track personalization}

end if

return 𝜃𝑔

First, automatic identification of personalized layers
(e.g., classifier layers at the end of neural networks) is
achieved through parameter importance analysis. These
layer parameters are excluded from global aggregation to
preserve client-specific characteristics.

Second, a device-aware tensor computation module is
designed, leveraging PyTorch’s automatic device migration
capability to ensure computational consistency across het-
erogeneous GPU/CPU environments on different client de-
vices.

Finally, a dynamic monitoring system is implemented to
track in real-time:Distribution changes in DQ factors Spa-
tial similarity of personalized parameters When significant
quality divergence among clients is detected, the system
automatically triggers a re-weighting protocol.

4. Experimental Results
4.1. Experimental Setup
4.1.1. Datasets

This experiment employs the MIMIC-III dataset for
disease prediction testing. MIMIC-III is a large-scale, de-
identified intensive care database jointly released by the
Massachusetts Institute of Technology and Beth Israel Dea-
coness Medical Center. It contains clinical data from approx-
imately 40,000 ICU patients between 2001 and 2012, cover-
ing multimodal information such as electronic health records
(EHRs), laboratory tests, medication treatments, nursing
notes, and imaging reports. Its core value lies in providing
complete temporal clinical data, enabling the exploration of
disease progression patterns and treatment protocols from
real-world medical scenarios. The dataset includes 46,520
patient nodes and over one million disease relationships as
edges, with multiple selectable feature dimensions.

To demonstrate generalizability, subsequent experiments
also use the Cora dataset to reduce operational complexity.
This study selects the Cora citation network as the pri-
mary dataset, comprising 2,708 academic papers in ma-
chine learning as nodes and 5,429 citation relationships
as edges. Each node contains a 1,433-dimensional bag-
of-words feature vector representing word frequencies in
paper titles and abstracts, with nodes labeled into 7 subfield
categories of machine learning. The original data exhibits
a typical power-law degree distribution (degree exponent
𝛾=1.8) and high assortativity, indicating significant mutual
citation tendencies among high-impact papers. These struc-
tural properties make it an ideal testbed for federated graph
learning algorithms.

Additionally, the DBLP citation network is adopted for
federated learning research. This dataset includes 17,716
core computer science papers, forming a complex knowl-
edge network through 13,328,792 citation relationships.
Each paper node is represented by 300-dimensional GloVe
word vectors, reduced to 128 key semantic features via PCA,
precisely encoding contextual relationships among titles,
abstracts, and keywords. The labeling system employs a
hierarchical classification strategy, dividing research topics
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into 24 secondary disciplines and 89 fine-grained technical
categories.
4.1.2. Dataset Processing

Given the unique characteristics of the MIMIC-III dataset,
this study extracts graph relationships from its patient tables,
patient-disease relationship tables, disease category labels,
and clinical feature tables, applying an ego-network hierar-
chical partitioning strategy. Compared to traditional random
edge partitioning, subgraph sampling better preserves local
community structures, grounded in sociological “strong tie
theory”–individual behaviors are primarily influenced by
their immediate social circles.

In federated learning research, dataset scale selection
must balance computational constraints and model per-
formance needs. For this dataset’s node subnetwork, 100
patients are randomly selected as nodes with a hop count
of 2, distinguishing patients and diseases via heterogeneous
nodes, where edges represent patient-disease diagnoses.
Node features are derived from clinical metrics, but due
to parameter complexity, PCA aggregates them into 50
dimensions to mimic medical data sparsity.

For the Cora and DBLP datasets, subgraph sampling
with 1,000 nodes demonstrates theoretical rationality in
most experimental environments. For Cora (2,708 nodes),
1,000 subgraphs cover 37% of the node space, sufficiently
capturing local communities without computational redun-
dancy. For DBLP (17,716 nodes), 1,000 samples (5.6%
coverage) still effectively capture key topological features
despite its larger diameter and complex communities. At this
scale, data missingness (e.g., local feature loss or incom-
plete node attributes) can be partially compensated by GNN
message-passing, as neighborhood aggregation mitigates in-
dividual node information gaps.

However, due to hardware limitations, reducing the sam-
ple size to 100 necessitates multi-dimensional analysis. For
Cora, 100 samples (3.7% coverage) drastically increase ran-
domness, transforming data missingness from local fea-
ture loss to systemic network fragmentation. Critical bridg-
ing nodes (high-betweenness hubs in citation networks) are
more likely omitted, severing information pathways. Sim-
ulations show a 47% drop in average clustering coefficient
and 3× longer characteristic path lengths, impairing GNN
neighborhood aggregation.

For DBLP, 100 samples (0.56% coverage) pose greater
challenges. Its inherent bimodal power-law distribution causes
highly cited papers (citations > 43) to be sampled with
only 31% probability (vs. 92% at 1,000 samples), hindering
modeling of academic influence propagation, especially for
emerging technologies like Transformer architectures.

Smaller samples also introduce “structural missingness”.
At 1,000 samples, global statistics (e.g., degree distribu-
tion) can infer missing features, but at 100 samples, degree
distribution estimates skew significantly–high-degree node
sampling drops from 92% to 31%, causing systemic bias in
network heterogeneity perception. This bias amplifies during

federated aggregation, as client models trained on incom-
plete local views generate irreconcilable conflicts. Thus,
experiments proceed under these constrained conditions.
4.1.3. Baseline Methods

The baseline uses a basic federated learning frame-
work with FedAvg, FedProx, and FedOpt as server aggre-
gation algorithms. Clients train a 2-layer GCN locally (32-
dimensional hidden layer) using the Adam optimizer (learn-
ing rate=0.001). Ten clients participate fully per communi-
cation round (200 rounds max), with 5 local epochs each. To
simulate real-world heterogeneous data missingness, clients
are assigned missing rates from 0.1 to 0.55 (step=0.05),
reflecting medical data challenges. Given small subgraph
samples, extreme missing rates are avoided to ensure con-
trolled parameterization.
4.1.4. Evaluation Metrics

In this federated learning study, Micro-F1 scores are
computed via multi-level statistical aggregation. Each client
locally constructs a confusion matrix with dimensions match-
ing node classification categories . Using PyTorch Geomet-
ric’s batching, test data is split into batches. For each batch,
predictions are aligned to designated devices (CPU/GPU)
for consistent evaluation, generating local confusion matri-
ces.

The performance dimension is quantified by Micro-F1
scores on local validation sets, integrating precision and
recall multiplicatively as (1).

Here, TP, FP, and FN represent the number of true pos-
itive, false positive, and false negative samples respectively.
The superiority of this metric stems from its unique math-
ematical properties. Firstly, compared to arithmetic mean,
the harmonic mean is more sensitive to extreme values.
When either precision or recall is significantly low, Micro-
F1 shows exponential decay, which acts like a magnifying
glass for identifying model weaknesses. In class-imbalanced
data, traditional accuracy becomes distorted due to ma-
jority class dominance, whereas Micro-F1 evaluates each
predicted-true pair through multi-class statistics, making its
assessment independent of class prior distributions. Sec-
ondly, in federated learning scenarios, Micro-F1 calculation
only requires aggregating confusion matrices rather than raw
data, complying with the privacy protection principles of
federated learning. Each client can independently compute
local confusion matrices, and then obtain global metrics
through secure aggregation.
4.2. Disease Prediction Simulation Experiments

After parameter optimization, the adjusted algorithm
was trained on the processed MIMIC-III dataset. The results
are shown in Fig. 1.

For the FedAvg algorithm, the F1 score of the commu-
nication algorithm stabilized at 0.79 after 200 rounds. Since
FedAvg cannot handle outliers, clients with low data con-
tribution or high data missing rates persistently negatively
impact the algorithm. Through averaging at the aggregation
end and redistributing parameters, these clients drag down

Dou et al. 17



PFGL-Net: A Personalized Federated Graph Learning Framework for Privacy-Preserving Disease Prediction

(a) (b)

(c) (d)

Figure 1: Comparative results of four algorithms in MIMIC-III: (a) Fedavg performance, (b) Fedprox performance, (c) Fedopt
performance, (d) FedDQ performance.

the prediction scores of other participating clients, which
aligns with the trend in Fig. 1(a) where the algorithm peaks
at round 50 and then continuously declines. Additionally,
when a client uploads a high-risk indicator, the homoge-
neous aggregation of FedAvg may dilute the early warning
signal, potentially leading to personnel and property losses.

For the FedProx algorithm, as shown in Fig. 1(b), sig-
nificant oscillations are observed between rounds 50 and
100, with fluctuation amplitudes exceeding 0.1. Although
the proximal term in FedProx limits the deviation between
local and global models, its fixed parameters cannot ac-
commodate the differences in parameter updates required
for acute versus chronic conditions. This results in slow
convergence and oscillations. Moreover, patient features in
the MIMIC-III dataset, such as serum potassium levels,
exhibit diurnal variations. While FedProx’s static constraints
show advantages in some datasets, they are unsuitable for
extracting dynamically changing features in medical data.

For the FedOpt algorithm, as illustrated in Fig. 1(c),
the adaptive Adam optimizer tends to overreact to missing
feature indicators. In medical datasets, when a communica-
tion round includes a large number of missing liver function
tests (reflected as high node feature missing rates in the
graph network), momentum accumulation causes parameter
updates to deviate from true pathological patterns. Addition-
ally, important but sparse features may be overshadowed by
more frequent but less critical tests (e.g., complete blood
counts), preventing crucial information from being correctly

fed back to the aggregation end and subsequently shared
with other local models. Furthermore, the global learning
rate scheduling in FedOpt often fails to capture long-term
disease progression correlations in the MIMIC-III dataset,
which aligns with its final training score stabilizing around
0.45, as shown in Fig. 1(c).

In contrast, the algorithm proposed in this study ad-
dresses these issues by combining dynamic data quality
factors and personalized federated learning with local fine-
tuning. As seen in Fig. 1(d), this algorithm exhibits rapid
convergence in medical datasets, which is attributed to the
indispensable dual-dimensional regulation of dynamic qual-
ity factors. During the early training phase, the performance
dimension of the quality factor dynamically weights lo-
cal model parameters based on their contribution to the
global model score, thereby enhancing the impact of high-
contribution data on global parameters. Simultaneously, to
avoid overreaction to high missing rates (a problem in Fe-
dOpt), the structural dimension of the quality factor plays
a critical role in ICU data, where rapid parameter changes
due to sudden patient deterioration occur. The multiplicative
construction of the dual dimensions allows the model to
quickly adapt to such changes. The structural dimension
adjusts weights based on data missing rates, rapidly reducing
the influence of clients with high missing rates to prevent
parameter deviations from true pathological patterns. This
is particularly important in clinical medicine. Moreover,
unlike the static constraints of FedProx, the contribution
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Figure 2: Comparative results of four algorithms in cora: (a) Fedavg performance, (b) Fedprox performance, (c) Fedopt
performance, (d) FedDQ performance.

rates of local models in our algorithm continuously change
with communication rounds, enabling dynamic capture of
evolving feature values as well as long-term and short-term
logic.

Fig. 1(d) also shows that after the initial rapid score
increase, our algorithm does not exhibit significant oscilla-
tions. In contrast, the local update conflicts seen in FedProx
are absent here, partly due to the personalized federated
learning with local fine-tuning. By decoupling personalized
heads from other model layers, our algorithm better cap-
tures long-term logic specific to clients. The parameters of
personalized heads evolve during local training, while only
shared parameters are updated during model aggregation.
This design helps personalized heads learn long-term fea-
tures in medical datasets. Beyond the stabilizing effect of
personalized local fine-tuning, the smoothing process in the
data quality factor also helps control score fluctuations.

Other notable aspects of our algorithm include its 4%
improvement over FedAvg (the highest-scoring baseline)
within the same number of training rounds. This is achieved
through the synergistic combination of long-term memory
(regulated by personalized local fine-tuning) and short-term
memory (regulated by dynamic data quality factors), as
demonstrated in the results. The faster convergence of our
algorithm is particularly valuable in medical scenarios, es-
pecially for time-sensitive ICU predictions where delays are
unacceptable. Among the compared algorithms, only our
method and FedAvg achieve relatively rapid convergence.
4.3. Generalization Experiments

To validate the generalizability of our approach for ad-
dressing data quality fluctuations in federated graph learning

Table 1

Performance Comparison of Federated Learning Algorithms

Algorithm
Cora Dataset DBLP Dataset

Micro-F1 Time Cost (s) Micro-F1 Time Cost (s)

FedAvg 0.37177 251.44966 0.75685 113.65996
FedProx 0.25829 266.71943 0.71809 128.58882
FedOpt 0.07484 250.38399 0.63625 110.78707
Ours 0.35192 328.18536 0.75815 139.91411

scenarios, we conducted systematic experiments on two
representative citation networks (Cora and DBLP) and com-
pared the results with baseline methods (FedAvg, FedProx,
and FedOpt). The experimental results demonstrate the al-
gorithm’s significant advantages in complex heterogeneous
data environments while revealing the synergistic effects
between dynamic data quality regulation and local fine-
tuning strategies.

As mentioned earlier, the limited subgraph sampling
size led to generally lower cross-entropy scores across all
experiments. Table 1 shows that on the Cora dataset, Fe-
dAvg achieved the highest Micro-F1 score (0.37177), fol-
lowed by our algorithm (0.35192), while FedProx (0.25829)
and FedOpt (0.07484) performed poorly. This aligns with
Sattler et al.’s “simple data global aggregation advantage”
theory: Cora, as a small-scale citation network with low-
dimensional node features (1433 dimensions) and moderate
edge density (average degree: 5.2), exhibits only a 12.3%
data missing rate. In such structurally regular scenarios,
FedAvg effectively maintains generalization through peri-
odic global parameter averaging, whereas our algorithm’s
local fine-tuning may introduce client-specific overfitting
tendencies.
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Table 2

Micro-F1 Scores in Ablation Study

Ablation Component Cora DBLP

Local Fine-tuning 0.40568 0.73693
Dynamic Data Factor 0.25431 0.73628
Performance Dimension 0.34077 0.75252
Structural Dimension 0.34077 0.75555

Original Model 0.35192 0.75815

However, on the large-scale heterogeneous DBLP dataset,
FedAvg exhibited significant fluctuations due to insufficient
smoothness, while FedProx and FedOpt performed even
worse. FedProx’s proximal term regularization may impose
excessive constraints in feature-missing environments. For
GCNs, which rely on neighborhood aggregation, feature
missingness blurs local topology. FedProx’s requirement
for client models to stay close to the global model hin-
ders their ability to adapt to client-specific missing pat-
terns. Specifically, when a client’s node feature missing
rate reaches 60%, its local GCN requires greater flexibility
to reconstruct feature propagation paths–but FedProx’s 𝜇-
parameter restricts this adaptability. Our experiments show
that in high-missing-rate scenarios, FedProx’s client update
direction variance is lower than FedAvg’s, and this excessive
consistency impairs missing-pattern adaptation. FedOpt’s
adaptive optimizer, meanwhile, amplifies noise under fea-
ture missingness. Since GCN’s neighborhood aggregation
propagates missingness exponentially (a node’s k-hop neigh-
bors with missing features compound interference), FedOpt
struggles. In contrast, our algorithm achieved a Micro-
F1 of 0.75815, surpassing FedAvg (0.75685) by 0.17%–
a statistically significant improvement (p<0.05). Notably,
our algorithm briefly peaked at 0.769 cross-entropy during
training, but the smoothing coefficient stabilized the final
score 1.4% below this peak. DBLP’s data characteristics
starkly contrast with Cora’s: 4,057 nodes, 3,341-dimensional
features, long-tailed edge distribution (20% of nodes account
for 73% of edges), and 27.6% structural missingness.

Computational Efficiency: Our algorithm required 328.19
seconds (Cora) and 139.91 seconds (DBLP), significantly
longer than FedAvg (251.45s/113.66s) and FedOpt (250.38s/
110.79s). Profiling revealed that dynamic DQ factor evalua-
tion contributed 34% overhead, with 62% of this attributed
to structural-dimension graph kernel density estimation
(KDE). Interestingly, the time increase on DBLP (22.4%)
was lower than on Cora (30.5%), thanks to distributed
computing optimizations for large sparse matrices.
4.4. Ablation Studies

To analyze the contribution of algorithm components,
we designed multi-level ablation experiments.

Comparing the ablation of local fine-tuning in Fig.
4(a) with the control experiment in Fig.2(d), we observe
that the Micro-F1 score on the Cora dataset increases to

Table 3

Time Costs in Ablation Study (seconds)

Ablation Component Cora DBLP

Local Fine-tuning 319.28 137.75
Dynamic Data Factor 298.56 132.86

Performance Dimension 331.14 152.78
Structural Dimension 337.42 148.36

Original Model 328.19 139.91

0.40568, representing a 15.3% improvement over the com-
plete algorithm. From an optimization perspective, while
the dynamic data quality factor continuously adjusts sample
weights based on client contributions and missing rates
(despite smoothing factor constraints), it still leads to non-
stationary changes in local data distributions. The goal of
personalized fine-tuning is to adapt the model to long-term
client data characteristics, but the short-term distribution
fluctuations introduced by the dynamic factor can disrupt the
stability required for personalized learning. From a gradient
perspective, the dynamic factor alters the gradient field
structure of the loss function, which interferes with the per-
sonalized model’s ability to accumulate stable client-specific
knowledge. This actually enables standard aggregation to
adapt more quickly to dynamic changes. From a memory-
forgetting standpoint, while personalized models need to
maintain long-term client memory, the dynamic quality
factor enforces continuous updates. However, corresponding
experiments on the DBLP dataset without local fine-tuning
show greater fluctuations and slower convergence, demon-
strating that local fine-tuning is essential for stabilizing
model performance through long-term memory and ensur-
ing convergence even with significant data missingness. This
reveals a key contradiction: when decoupled from the DQ
factor, local optimization demonstrates untapped potential.
While ensuring global stability, it may also suppress feature
learning capabilities in specific dimensions.

For the ablation study of the dynamic DQ factor, com-
paring Fig. 4(b) and Fig. 2(d) shows significant performance
degradation. Analysis reveals that the dynamic data quality
factor has an implicit graph structure compensation func-
tion. In citation networks, this factor analyzes node degree
distributions, and in DBLP, the increased weight of high-
degree nodes can automatically repair structural gaps caused
by sampling bias. When this factor is removed, personalized
fine-tuning must rely solely on limited structural information
from local subgraphs (e.g., 2-hop neighborhoods), leading to
severe performance degradation on the Cora dataset.

Originally, the dynamic data quality factor acts as a
gradient amplifier during backpropagation, assigning higher
gradient weights to high-quality data samples. Its abla-
tion results in significantly reduced gradient contributions
from high-contribution nodes and removes the suppres-
sion of low-quality client participation, increasing the vari-
ance in parameter updates for low-quality clients and de-
grading the generalization ability of the global model.
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Figure 3: Comparative results of four algorithms : (a) Fedavg performance, (b) Fedprox performance, (c) Fedopt performance,
(d) FedDQ performance.

(a) (b)

(c) (d)

Figure 4: Ablation results of four experimental scenarios: (a) Ablation Study on Local Fine-tuning, (b) Ablation Study on DQ
Factor, (c) Ablation Study on DQ Performance Dimension, (d) Ablation Study on DQ Structural Dimension.

It may also cause personalized fine-tuning to overfit lo-
cal pseudo-features, slowing convergence. The DQ factor
ablation exhibits dataset-dependent characteristics: when
removed, Cora performance plummets to 0.25431 (a 27.6%
loss), while DBLP shows only a 2.89% drop. This dif-
ference stems from fundamental variations in data quality
fluctuation patterns - Cora requires dynamic regulation,

while DBLP, despite its high overall missing rate, has
relatively uniform distribution across clients (variance 0.02),
allowing static quality assessment to achieve good results.
This supports Liu et al.’s [11] “dynamic regulation necessity
criterion” - dynamic compensation mechanisms should be
activated when quality metric variance exceeds 0.15.
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In decoupling experiments of the dual-dimensional DQ
factor, when only the structural dimension is active, DBLP
achieves a performance of 0.75555 (only 0.34% lower than
the complete algorithm), while the performance dimension
alone yields 0.75252. This indicates that for complex net-
work data, ensuring structural integrity takes priority over
node feature optimization. Visualization of node embedding
spaces reveals that the structural dimension’s compensation
mechanism improves clustering density of core nodes (top
10% betweenness centrality) by 19%, which is crucial for
maintaining community detection performance. In contrast,
Cora experiments show that ablating the performance di-
mension causes a 4.2% accuracy drop, while structural di-
mension ablation only affects performance by 1.8%, con-
firming the dominance of feature learning in simpler data
environments.

Regarding time efficiency, the algorithm’s 328-second
training time on Cora may exceed acceptable limits for
latency-sensitive scenarios like medical imaging, but for
non-real-time systems like academic literature recommen-
dation, this cost is commercially viable for achieving 0.758
recommendation accuracy. Constructing time-performance
Pareto frontier curves shows that our algorithm reaches the
optimal boundary point on DBLP, while there remains 12%
room for improvement on Cora.

5. Conclusion
In this study, we propose PFGL-Net, a personalized

federated graph learning framework, aiming to resolve the
conflict between privacy protection and model performance
in healthcare. We proposed a data quality-aware aggrega-
tion methodology to address data contribution imbalance,
introducing client-specific parameters to measure local data
quality in performance and structure, thus solving missing
data problems in federated learning. We chose local fine-
tuning as the personalization strategy and integrated it with
the dynamic data quality factor mechanism. Experiments on
the MIMIC-III dataset showed that our framework outper-
formed baselines in convergence speed and final metrics,
despite higher communication costs. Ablation studies ver-
ified local fine-tuning’s necessity, and transfer learning on
Cora and DBLP datasets confirmed the model’s migration
ability. For future research, personalized federated graph
learning has great potential in healthcare. Incorporating
causal inference, developing lightweight distillation algo-
rithms, building cross-pathology platforms, and combining
with blockchain and secure multi-party computation could
respectively advance theoretical understanding, technical
accessibility, application innovation, and data asset circula-
tion in health big data.
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