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A B S T R A C T

Cryptocurrencies like Bitcoin promise secure, decentralized transactions, but their anonymity also
attracts illicit activity, posing a challenge to regulators and exchanges in maintaining control. This
study tackles fraud detection in Bitcoin’s transaction network using the Elliptic dataset, a real-
world collection of labeled transactions. We combine three powerful graph neural networks Graph
Convolutional Network (GCN), Graph Attention Network (GAT), and Graph Isomorphism Network
(GIN) each capturing different patterns in the complex web of blockchain payments. By blending
their predictions through ensemble techniques, such as tuned soft voting, we achieve a robust system
that detects over 70% of illicit transactions while keeping false alarms below 1%. Our approach
balances precision and coverage, making it practical for real-time anti-money laundering efforts. The
modular framework adapts easily to new data, paving the way for scalable, reliable monitoring of
cryptocurrency fraud.

1. Introduction
Bitcoin’s publication by Nakamoto in 2008 introduced a

payment system that removed the need for central authorities
by recording every transfer in a publicly verifiable ledger
[1]. What followed was an unprecedented expansion of
digital-asset markets: by early 2025, the combined market
capitalization of cryptocurrencies had crossed $3 trillion,
while Bitcoin alone processed more than $100 billion in
daily settlement value [2, 3]. At the same time, the same
pseudonymity and borderless reach that make blockchains
attractive to legitimate users have also created fertile ground
for criminal finance [4]. Chainalysis estimates that addresses
linked to ransomware, darknet vendors, investment scams,
sanctions evasion, and money laundering schemes moved
roughly $43 billion worth of cryptocurrency in 2024. How-
ever, that figure represents less than one-tenth of one percent
of on-chain volume; the absolute sum is larger than the an-
nual budgets of many national regulators [5]. The challenge
is amplified by the speed with which illicit actors adapt,
adopting peel chains, mixer services, cross-chain swaps, and
stealth addresses to confound tracing efforts [6]. Failure to
intercept these funds erodes consumer trust, exposes ex-
changes to legal penalties, and undermines broader adoption
of blockchain technology.

Financial regulators responded to the rise of cryptocur-
rency by extending conventional anti-money laundering
(AML) and counter-terrorist financing (CTF) rules to virtual
asset service providers [7]. The Financial Action Task
Force’s Recommendation 15 now requires exchanges, custo-
dians, and broker-dealers to conduct customer due diligence,
maintain audit trails, and report suspicious activity involving
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digital assets [8, 9]. Jurisdictions such as the European
Union have transposed these standards into complex law
through the Market in Crypto-Assets Regulation and the
revised Transfer of Funds Rule [10]. At the same time, the
United States has leveraged the Bank Secrecy Act and the
Office of Foreign Assets Control’s sanctions programme to
prosecute non-compliant platforms [11]. Compliance teams
must therefore screen millions of transactions daily, flagging
those that may involve sanctioned entities or laundering
typologies before assets leave their ecosystems [12]. Tradi-
tional monitoring engines rely on static heuristics thresholds
on transaction amounts, geofencing of high-risk jurisdic-
tions, or simple pattern-matching of repeated deposits and
withdrawals. Such rule systems offer transparency but suffer
two fatal weaknesses: first, they generate large volumes of
false positives when parameters are set aggressively; second,
they miss sophisticated schemes that evolve more quickly
than rules can be updated.

Two technical properties of blockchains complicate au-
tomated surveillance. First, the data are simultaneously pub-
lic and pseudonymous [13]. Every transaction is visible, yet
the actual owners of addresses are hidden unless they are
voluntarily disclosed or deanonymized by secondary evi-
dence. Second, blockchains form directed transaction graphs
that grow without bound and exhibit heavy-tailed degree
distributions: the overwhelming majority of addresses in-
teract only once or twice, whereas a minority act as high-
throughput hubs [14]. Criminal organizations exploit these
structural properties to obscure the connections between
origin and destination. Peel chains, for instance, split a large
illicit pot into a succession of small transfers; mixers pool
inputs from many sources and redistribute them in batches;
cross-chain bridges move value into privacy-preserving net-
works such as Monero or Zcash [6]. Any detection system
must therefore reason not only about individual attributes
(amount, fee, time) but also about multi-hop topology and
temporal evolution [15].
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1.1. Early Machine-Learning Approaches
The first wave of academic studies applied classical

tabular machine learning to blockchain fraud. Researchers
extracted handcrafted statistical features, such as the log of
transferred value, standard deviation of inter-arrival times,
address lifetime, and balance oscillations and trained lo-
gistic regression, support vector machines, decision trees,
or gradient-boosted forests [16]. On modest datasets, these
models already outperformed static rules in recall and pre-
cision. Nevertheless, they were fundamentally limited by
their representation: a flat feature vector cannot capture the
relational context that frequently determines suspiciousness.
For example, an outward payment of one bitcoin may be
perfectly benign if it flows from a long-standing merchant
to a payment processor, but ominous if it lies on a path
connecting a darknet marketplace to an exchange. Tabular
features treat both cases identically unless complex, hand-
crafted graph metrics such as PageRank, betweenness, or
flow centrality are included; even then, such metrics may
only approximate local patterns[17].

Investigators, therefore, began adding explicit graph-
theoretic descriptors. Centrality scores identify nodes that
mediate large portions of the flow; clustering coefficients
highlight tightly interconnected pools; and shortest-path
statistics signal proximity to known illicit clusters [18].
When fed into tree-based ensembles, these descriptors sig-
nificantly improved classification. However, each graph
metric encodes only one aspect of topology, and design-
ing an exhaustive library is prohibitively time-consuming.
Furthermore, many graph measures are computationally
expensive on networks containing hundreds of thousands
of nodes.Graph Neural Networks (GNNs) emerged as a
compelling alternative because they learn topology-aware
representations automatically [19]. A Graph Convolutional
Network (GCN) performs neighbourhood aggregation in
which each node mixes its features with a degree-normalized
sum of its neighbours’ features at every layer, enabling
information flow across the graph [20]. Graph Attention
Networks (GAT) refine this mechanism by assigning learn-
able importance coefficients to incoming edges, thereby
allowing the model to focus on the most informative relation-
ships [21]. Graph Isomorphism Networks (GIN) reach the
theoretical expressive limit of message-passing by embed-
ding neighbourhood structures via multi-layer perceptrons
coupled with learnable 𝜖-terms [22]. Compared to hand-
crafted metrics, GNNs alleviate practitioners of the effort
required for feature engineering, adapt to evolving patterns,
and scale through mini-batch training [23].

An obstacle to progress was the scarcity of labelled
blockchain data, since exchanges and analytics vendors
guard incident reports. The Elliptic consortium addressed
this by publishing a subgraph of the Bitcoin ledger compris-
ing 203,769 transaction vertices, 234,355 directed edges,
and 166 obfuscated numerical features per vertex [24].
Of these vertices, 42,019 were labelled as licit (primarily
exchange deposits and merchant payouts), 4,545 were la-
belled as illicit (connections to darknet markets, mixers, or

ransomware wallets), and the remainder were left unknown.
Crucially, the labels follow block-time order across forty-
nine discrete steps, creating a natural chronological split:
steps 1-34 for training, 35-40 for validation, and 41-49
for testing. Three formidable challenges emerge. First, the
illicit class represents only 2.23% of the labelled data, so
accuracy is a misleading metric; models must be judged
on recall, precision, F1, and the precision-recall area under
the curve [25]. Second, the graph is sparse and exhibits
numerous small, disconnected components, which com-
plicates message propagation. Third, the numeric feature
distribution drifts over time, reflecting shifts in exchange
behavior, fee regimes, and wallet software [26]. Any model
must therefore generalise temporally, not merely memorise
contemporaneous patterns.

Weber et al. evaluated several baselines on Elliptic and
found that a tuned random-forest classifier marginally out-
performed a two-layer GCN in illicit-class F1-score [24].
Subsequent studies replicated this result, sometimes observ-
ing gains from GraphSAGE or temporal graph attention,
but seldom exceeding 0.45 illicit-class F1 without extensive
oversampling [27]. The conclusion is that classical ensem-
bles of decision trees capture distributional feature inter-
actions that are absent from naïve node features, whereas
GNNs exploit structural context; yet neither alone fully re-
solves the task. Ensemble learning aggregates diverse mod-
els in hopes that their uncorrelated errors cancel. Bagging
reduces variance by averaging the predictions of indepen-
dent learners trained on bootstrap samples [28]. Boosting
reduces bias by sequentially focusing on previous errors. For
transactional AML, there is growing evidence that cross-
family ensembles those that combine tree models and neural
models offer significant uplift because each learner type
emphasizes different cues [29]. The most common ensemble
fusion mechanisms can be categorized into three types.

In a hard-voting ensemble, each base learner outputs a
discrete class label. The ensemble prediction is simply the
class receiving the most votes. Hard voting is computation-
ally trivial, easy to interpret, and robust to mis-calibration,
but it treats all constituents as equally competent. If one
model consistently outperforms the others, its advantage is
diluted. Soft-voting, often implemented as weighted averag-
ing, instead combines the class-probability vectors produced
by each learner. A coefficient is assigned to each model, and
the final probabilities are calculated as the weighted sum of
these coefficients. Coefficients can be uniform, proportional
to the validation F1 score, or optimised directly to im-
prove performance. Soft voting respects differences in model
confidence and can rescue rare-class recall by amplifying
specialized detectors, yet it presupposes that probabilities are
well-calibrated; otherwise, overconfident weak learners may
dominate the results [30].

Stacking introduces an additional meta-learner. Base
learners generate probability vectors which, along with aux-
iliary features, feed into a second-stage classifier trained to
approximate the ground truth. The meta-learner can discover
nonlinear interactions among base-prediction patterns, often
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achieving state-of-the-art performance [31]. The downside
is added complexity: data must be split carefully to avoid
information leakage, and inference latency grows because
predictions cascade through two levels. Moreover, regu-
latory auditors may question the transparency of a meta-
learner that blends opaque neural probabilities.

Existing work on blockchain fraud demonstrates the
promise of ensembles but leaves critical questions open.
First, hard voting, weighted averaging, and stacking have
not been compared head-to-head on Elliptic or any other
large, labelled Bitcoin graph. Hence, practitioners lack guid-
ance on which fusion to deploy under specific latency or
interpretability constraints. Second, prior ensembles bagged
multiple random seeds of the same architecture or paired
a tree model with one GNN; few studies truly fused het-
erogeneous graph backbones such as GCN, GAT, and GIN.
Third, investigations often report prediction metrics while
ignoring computational efficiency; yet, compliance desks
require alerts within seconds. Finally, imbalance mitigation
is usually confined to the base-model level, without propa-
gating class considerations into the ensemble.

The present study addresses these deficiencies by train-
ing three distinct graph neural networks GCN, GAT, and
GIN under a class-balanced focal loss and evaluating them
chronologically on Elliptic. We then construct three ensem-
bles: a hard-voting system that gives equal weight to each
backbone, a soft-voting system whose coefficients corre-
spond to the illicit-class F1-scores on the validation data,
and a stacking system that employs logistic regression as
the meta-learner. We measure macro-F1, illicit-class recall,
precision-recall area under the curve, and overall accu-
racy [32]. In parallel, we profile training time, GPU mem-
ory, and per-1000-node inference latency. Our results reveal
that weighted averaging lifts illicit recall by nearly seven
percentage points over the strongest single backbone while
preserving sub-fifty-millisecond inference latency, thereby
satisfying real-time AML constraints. Hard voting trails
slightly in recall but offers maximal simplicity and trans-
parency. Stacking attains the best precision-recall curve yet
doubles latency, making it appropriate where throughput
demands are modest. Beyond scores, gradient-based attribu-
tion shows that the ensemble consistently highlights high-
betweenness broker nodes, providing forensic insight [33].
Taken together, these findings furnish a concrete blueprint
for deploying ensemble graph learning in production-grade
blockchain analytics.

2. Methodology
Before training our model, we implemented a series of

essential preprocessing steps to transform the raw blockchain
data into a graph-compatible format suitable for graph
neural network learning. These steps involve extracting node
features, building graph structure, handling label imbal-
ances, and preparing the data for PyTorch Geometric. The
following subsection details the dataset’s characteristics and
the preprocessing workflow applied. This preparation is

Table 1

Key Preprocessing Steps for Model Training

Step Description

Nodes / Edges 224,555 nodes and 203,765 edges re-
tained

txId Mapping Assigned index IDs to each txId

Edge Filtering Kept edges with valid source�target pairs
Feature Tensor Converted node features (166-D) to ten-

sors
Label Encoding Encoded licit, illicit, and unknown

classes
Data Object Built PyG object with x, edge_index, y
GPU Transfer Moved data to GPU for training
Mask Creation De�ned known / unknown node masks
Data Split 80/10/10 split for train, validation, and

test
Class Balance Preserved licit�illicit ratio across splits

critical to ensure data integrity, training efficiency, and re-
liable performance evaluation across time-segmented graph
partitions.

2.1. Dataset Description
The study draws on the Elliptic Bitcoin transaction

dataset, a curated subset of the Bitcoin ledger that has
been released for academic anti-money laundering (AML)
research [24]. The corpus spans 49 consecutive two-week
intervals between 2013 and 2017, encompassing 203,769
transaction vertices linked by 234,355 directed payment
edges. Each edge connects an output-spending transac-
tion to its creator, thereby inheriting Bitcoin’s topologi-
cal order and temporal causality. Investigators at Elliptic
manually labelled a subset of vertices by tracing links to
exchanges, darknet markets, mixers, and ransomware cash-
out addresses. This forensic triage yielded 42,019 licit
transactions (20.62%), 4,545 illicit transactions (2.23%),
and 157,205 unlabeled transactions (77.15%) [34]. Three
salient properties make Elliptic a challenging yet realistic
benchmark: extreme class imbalance, heterogeneous node
feature space, and strict chronological segmentation.

2.2. Data Preprocessing and Preparation
Every vertex possesses a 166-dimensional numeric fea-

ture vector. The first 94 variables describe intrinsic transac-
tion properties, including block height, input count, output
count, input volume, output volume, transaction fee, and
value dispersion statistics, which are derived directly from
raw blockchain data [35]. The remaining 72 variables sum-
marize the one-hop inbound and outbound neighborhoods
across the same time step, encoding statistics such as the
mean input value of neighboring transactions or the variance
of their output counts [24]. All features are continuous
and anonymised; no personally identifying information is
present. Prior work shows that local transaction statistics and
neighbour aggregates together capture both behavioural and
structural fraud cues [36, 37]. The Elliptic team provided the
features Z-standardised on the complete data, eliminating
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Figure 1: Proposed blockchain fraud detection methodology pipeline.

(a) Degree frequency showing a heavy-tailed distribution. (b) CCDF indicating power-law behavior with a long tail.

Figure 2: Log-log plots of node degree distribution in the transaction graph.

the need for further scaling. The dataset is organized as 49
time steps (T1-T49). Within a given step, all transactions
share the same approximate blockchain height, and edges
exist only among those vertices; no edge crosses time-
step boundaries [24]. This temporal partitioning preserves
causality and prevents inadvertent information leakage from
future to past. Temporal isolation also implies that each
step forms a weakly connected component or collection of
smaller components; the global graph is thus the disjoint
union of 49 subgraphs. Maintaining this segmentation is
essential when evaluating models that must generalise across
time [38].

2.3. Raw Data Cleaning
The raw release consists of three CSV files includ-

ing: elliptic_txs_features.csv, elliptic_txs_classes.csv,

and elliptic_txs_edgelist.csv. Two integrity checks were
performed. (i) Duplicate txId rows were removed; only the
first occurrence of a transaction hash was retained (affect-
ing 73 nodes). (ii) Edges referencing non-existent vertices
were discarded (14 edges, < 0.01% of total). No missing
values were detected in the feature matrix or label file. The
Elliptic files encode class information numerically: class
1 (illicit) and class 2 (licit). For readability, we mapped
these to the strings ‘illicit’ and ‘licit’; absent labels were
assigned the value ‘unknown’. An auxiliary emoji column
aided manual inspection during exploratory plots. After
mapping, a contingency table confirmed the published class
ratios. Maintaining label integrity at this stage is critical
because subsequent sampling and stratification depend on
accurate class counts [39].
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Figure 3: Visualization of nodes ranked by degree, betweenness, and closeness; overlaps are marked with composite symbols.

Figure 4: Log�log degree distribution of the 5% Elliptic sample
showing a power-law with few hubs and many low-degree
nodes.

Full-scale graph training incurs substantial memory
overhead. To accelerate architecture prototyping and hy-
perparameter tuning, a 5% stratified sample of each label
group was drawn (random seed 42). Stratification preserves
class proportions and thus maintains the original imbalance
ratio. The sample comprises 7,860 unknown, 2,101 licit, and
227 illicit vertices (10,188 nodes in total) distributed across

all 49 time steps. Previous AML studies report that a 5-
10% subset, if stratified, yields performance estimates within
±2% F1 of full-graph results while reducing preprocessing
latency by an order of magnitude [40]. Edges were filtered
to keep only those whose endpoints both appear in the
sampled vertex set. This operation produced 23,051 directed
edges, guaranteeing that the resulting subgraph is closed
under adjacency and preserves the original directionality.
Because edges never cross time-step boundaries, every step
remains an independent subcomponent after filtering. Bit-
coin transaction hashes are 256-bit strings, so they cannot be
used directly as array positions. To solve this, each sampled
hash was assigned a unique consecutive integer, creating a
simple lookup table that lets us replace every string with
a zero-based index. This conversion is a standard step in
graph neural network workflows [41]. After remapping, the
source target pairs of transactions were organized as a two-
row matrix with 23,051 columns, providing the edge list
in the coordinate format required by PyTorch Geometric.
The 10,188 nodes hold feature vectors of length 166 in a
single floating-point matrix, and each node’s label is set to 0
for licit, 1 for illicit, or −1 when unknown. Together, these
pieces form a PyTorch Geometric data object that bundles
the subgraph’s structure, features, and labels.

Only vertices with known labels (licit or illicit) par-
ticipate in supervised loss. Their indices were segregated
into training, validation, and test masks in an 80% / 10%
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/ 10% split, stratified by class. This produced 33,649 licit
and 3,602 illicit nodes for training, 4,148 and 508 for val-
idation, and 4,222 and 435 for testing. Stratified splitting
ensures that each subset approximates the global licit-to-
illicit ratio, thereby mitigating sampling variance. Unknown
nodes retain their feature vectors and adjacency but are
excluded from loss computation, allowing the GNN to prop-
agate information through them during message passing an
approach shown to improve minority-class recall in sparse-
label regimes [20]. Because the graph is temporal, we also
prepared an auxiliary split based strictly on time: steps 1-
34 for training, steps 35-40 for validation, and steps 41-49
for testing, mirroring the configuration used in the original
Elliptic baseline [24]. This chronological split eliminates any
possibility that a model trained on future data influences
predictions on the past. Comparing results across the random
and chronological splits quantifies the extent of temporal
leakage [26].

Exploratory network analysis quantified macro-level
graph properties that may influence GNN behavior. A log-
log histogram of node degrees revealed a heavy-tailed
distribution consistent with a power-law exponent of ap-
proximately 2.5, corroborating observations in other finan-
cial transaction graphs [14]. Weakly connected component
analysis identified 7,297 subgraphs; the giant component
consists of 400 vertices and 431 edges, implying that the
sampled graph remains highly fragmented. Clustering coef-
ficients per vertex averaged 0.06 with a standard deviation of
0.14, indicating sparsely-interconnected communities rather
than dense cliques. Betweenness centrality highlighted two
transactions (hashes 22837835 and 22837965) whose scores
exceeded 0.49, marking them as critical brokers in fund
flow; such nodes often correspond to exchange hot wallets or
mixer endpoints [42]. Closeness centrality placed these same
vertices within the top decile, underscoring their strategic
position. Shortest-path length distribution inside the giant
component peaked at four to six hops, aligning with the
small-world hypothesis for cryptocurrency networks [43].

2.4. Centrality-Based Feature Augmentation
High-level graph descriptors can complement raw trans-

action features. Consequently, degree, betweenness, and
closeness centralities were computed for each node (within
its time-step component) and appended as three additional
features, raising the feature dimension to 169. Prior studies
show that supplementing structural metrics can raise illicit-
class F1 by 2-3% when combined with node attributes [33,
44]. The centrality values were min-max scaled to [0, 1]
before concatenation. To verify reproducibility, all prepro-
cessing steps (label mapping, sampling, filtering, indexing,
feature augmentation, and mask creation) were executed
three times with different random seeds. Node counts and
class proportions were identical across runs, confirming
deterministic output when a fixed seed is used. Graph iso-
morphism checks using hash fingerprints validated that the
filtered subgraphs retained edge directionality and temporal
segmentation. The resulting PyG Data object consists of

10,188 vertices, 23,051 directed edges, a 169-dimensional
feature matrix, a binary label vector for licit (0) and illicit (1)
nodes, and boolean masks identifying training, validation,
and test subsets. Unknown nodes (label = −1) are present
in the graph but excluded from supervised loss. This object
serves as the foundation for subsequent graph neural network
training and ensemble experimentation.

2.5. Models Training and Evaluation
Graph-structured learning is uniquely suited to transaction-

level anti-money-laundering (AML) because every Bitcoin
payment resides in a vast, non-Euclidean network of cash
flows. After preprocessing, our working subgraph contains
10,188 nodes, 23,051 directed edges, and 169 features per
node. To exploit this relational context, the study trains three
complementary graph neural network (GNN) backbones
Graph Convolutional Network (GCN), Graph Attention
Network (GAT), and Graph Isomorphism Network (GIN)
and then combines their outputs through ensemble fusion.
Each architecture is dissected below, including its layer
purpose, data flow, hyperparameter choices, and theoreti-
cal expressivity. Subsequent sections formalize ensemble
strategies and justify the evaluation metrics used to gauge
effectiveness in an extreme-imbalance setting. Throughout,
the illicit class is portrayed as positive, while the licit class
is depicted as negative.

2.5.1. Graph Convolutional Network
A GCN extends the Fourier concept of convolution to ir-

regular graphs by multiplying node features with a truncated
Chebyshev expansion of the Laplacian eigenbasis [20]. Kipf
and Welling showed that a first-order approximation suffices
for semi-supervised node classification, yielding the update

𝐻 (1) = 𝜎(𝐴̂𝑋𝑊 (1)), 𝐴̂ = 𝐷−1∕2(𝐴 + 𝐼)𝐷−1∕2,

where 𝑋 ∈ ℝ𝑁×169 is the input matrix, 𝐴 is the adjacency,
𝐼 adds self-loops, 𝐷 is the degree matrix, 𝑊 (1) ∈ ℝ169×16

are trainable weights, and 𝜎 is an element-wise activation
(ReLU). The renormalized adjacency 𝐴̂ guarantees numer-
ical stability while ensuring locality: after 𝑘 layers, infor-
mation has propagated at most 𝑘 hops [45]. Layer 1 shrinks
the 169-dimensional raw vector to a 16-dimensional hidden
signal. A hidden width of 16 was chosen after grid search;
narrower widths restricted capacity, wider widths brought
diminishing returns and risked overfitting. Dropout 0.5 acts
on 𝐻 (1) during training to randomize the neighborhood
aggregation and reduce co-adaptation.

Layer 2 again performs a graph convolution, now map-
ping 16 features to two logits (licit, illicit). Because graph
convolutions preserve permutation equivariance, any node
permutations leave predictions unchanged a desirable prop-
erty for transaction graphs. A log-softmax transforms logits
into log-probabilities required by the negative log-likelihood
loss. Only two layers are used because deeper stacks suffer
from the over-smoothing effect, whereby repeated neigh-
bourhood averaging collapses node features toward indis-
tinguishability [45]. Residual or jumping-knowledge mecha-
nisms could partly alleviate over-smoothing but were deemed
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Figure 5: Two-layer Graph Convolutional Network (GCN) used
for node classi�cation, incorporating neighbor aggregation,
ReLU activation, log-softmax output, and cross-entropy loss.

unnecessary for two hops. ReLU after the first layer intro-
duces non-linearity, preventing the model from collapsing
to a linear Laplacian regressor. Weight decay at 5 × 10−4
controls parameter magnitude, counteracting the low-rank
nature of normalized Laplacian filters. Batch-level gradient
norms stay bounded without the need for gradient clipping.

The mathematical flow of the GCN is as follows:

1. Graph Input: Node features 𝐱𝑖 ∈ ℝ169 for nodes
𝑖 = 1, 2,… , 𝑁 , and adjacency matrix 𝐴 ∈ ℝ𝑁×𝑁

representing edges.
2. GCN Layer 1: Compute

𝐡(1)𝑖 = ReLU
(

∑

𝑗∈ (𝑖)
1

√

𝑑𝑖𝑑𝑗
𝐖1𝐱𝑗 + 𝐛1

)

, where

𝐖1 ∈ ℝ169×16, 𝐛1 ∈ ℝ16, and 𝑑𝑖, 𝑑𝑗 are node degrees.
3. GCN Layer 2: Compute 𝐡(2)𝑖 =

∑

𝑗∈ (𝑖)
1

√

𝑑𝑖𝑑𝑗
𝐖2𝐡

(1)
𝑗 +

𝐛2, where 𝐖2 ∈ ℝ16×2, 𝐛2 ∈ ℝ2.
4. Node Embedding Aggregation: Set 𝐡out

𝑖 = 𝐡(2)𝑖 as
the final embedding for classification.

5. Classification Layer: Compute 𝑦̂𝑖 = 𝐖3𝐡out
𝑖 + 𝐛3,

followed by 𝑦̂𝑖 = Sof tmax(𝑦̂𝑖) for log-probabilities.

2.5.2. Graph Attention Network
Uniform aggregation, as in GCN, assumes every neigh-

bour contributes equally after degree scaling. In transaction
graphs, however, a benign address can link to both reputable
exchanges and high-risk markets; assigning equal weight
blurs the signal. GAT addresses heterogeneity by comput-
ing edge-specific attention coefficients that allow selective
emphasis [21]. Each GATConv layer begins with a linear
transform 𝑊 ∈ ℝ169×8 that projects features into an 8-
dimensional subspace. For each edge (𝑖, 𝑗), the network
computes

𝑒𝑖𝑗 = LeakyReLU(𝑎⊤[𝑊 ℎ𝑖 ‖𝑊 ℎ𝑗]),

where 𝑎 ∈ ℝ16 is learnable, and ‖ concatenates transformed
node features. Softmax over neighbours yields normalized

Figure 6: Graph Attention Network (GAT) architecture with
multi-head attention, pooling, and classi�cation pipeline.

weights 𝛼𝑖𝑗 . A node aggregates its neighbourhood as 𝑧𝑖 =
𝜎(
∑

𝑗 𝛼𝑖𝑗𝑊 ℎ𝑗). We deploy eight parallel heads, producing
eight such 𝑧 vectors per node, which are concatenated into
a 64-dimensional embedding. The multi-head design stabi-
lizes training by averaging diverse sub-spaces, enabling the
model to capture multiple relation types simultaneously. A
0.6 dropout is applied to the attention coefficients and to the
concatenated output to regularize the substantial parameter
count introduced by eight heads. The second GAT layer
mirrors the attention mechanism but sets heads = 1 and
concat = False. This yields a 2-dimensional logit vector per
node. Unlike the first layer, where diversity among heads is
beneficial, the final prediction layer benefits from averaging
attention and avoiding redundant parameter duplication.

1. Graph Input: 𝑥𝑘 ∈ ℝ𝑑 for nodes 𝑖 = 1, 2,… , 𝑁 , and
𝐴 ∈ ℝ𝑁×𝑁 (Adjacency matrix representing edges
between nodes).

2. GAT Layer 1:ℎ(1)𝑖 = ReLU
(

∑

𝑗∈ (𝑖) 𝛼𝑖𝑗𝑊1𝑥𝑗 + 𝑏1
)

(with attention weights), where
𝛼𝑖𝑗 = Sof tmax

(

𝑎⊤[𝑊1𝑥𝑖 ||𝑊1𝑥𝑗]
)

(Attention mech-
anism).

3. GAT Layer 2:ℎ(2)𝑖 = ReLU
(

∑

𝑗∈ (𝑖) 𝛼𝑖𝑗𝑊2ℎ
(1)
𝑗 + 𝑏2

)

.

4. Node Embedding Aggregation: ℎout
𝑖 = ℎ(2)𝑖 (Final

embedding for prediction).
5. Classification Layer: 𝑦̂𝑖 = 𝑊3 ⋅ ℎout

𝑖 + 𝑏3, followed
by 𝑦̂𝑖 = Sof tmax(𝑦̂𝑖) (log-softmax for multi-class
classification).

Because attention is computed on-the-fly with node features,
a trained GAT generalizes to unseen graphs with the same
feature space a crucial property for live transaction monitor-
ing, where new transactions continually extend the graph.
The learned attention weights 𝛼 ∈ ℝ𝐸 quantify the per-edge
influence and can be inspected post-training for forensic
insights, thereby adding interpretability.

2.5.3. Graph Isomorphism Network
Xu et al. proved that message-passing GNNs are at

most as powerful as the Weisfeiler-Lehman (WL) graph
isomorphism test; many common aggregators, such as mean
and max, fail to distinguish graphs that WL separates [22].
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GIN attains WL power by using the sum aggregator, which
is injective on multisets when combined with a sufficiently
expressive MLP [46].

Sum Aggregation Mechanics For each layer 𝓁, the update
is

ℎ(𝓁+1)𝑖 = MLP(𝓁)((1 + 𝜖(𝓁))ℎ(𝓁)𝑖 +
∑

𝑗∈ (𝑖)
ℎ(𝓁)𝑗

)

.

The scalar 𝜖(𝓁) (initialized to 0, learned) balances self-
information versus neighbor sum. Because summation counts
feature occurrences, two distinct multisets map to distinct
sums, thereby preserving neighborhood identity that is
absent from mean pooling. Both MLP1 and MLP2 com-
prise Linear → ReLU → Linear with a hidden size of 64,
granting each layer universal approximation ability overℝ64.
Weight initialization uses Kaiming He (fan-in) to maintain
activation variance. After two GINConv stages, the node
embedding lies in ℝ64 a fully connected linear layer projects
to two logits, which are then fed into a log-softmax function.
The architecture forgoes graph-level pooling because the
task is node classification; embeddings remain per-node.
Sum aggregators are unbounded and can grow with node de-
gree, so batch normalisation would usually stabilise training.
Extensive experimentation showed that gradient explosions
were rare, thanks to the scale of

∑

being regularised by
weight decay.

GIN’s capacity introduces the risk of memorizing minority-
class nodes. We apply moderate weight decay, early stopping
based on validation F1, and maintain a constant learning
rate rather than scheduling it, to limit overfitting. Injective
aggregation preserves subtle structural traits, such as fan-
out mixers or peel chains, which are beneficial for illicit
detection but require careful generalization control.

1. Graph Input: 𝑥𝑘 ∈ ℝ𝑑 for nodes 𝑖 = 1, 2,… , 𝑁 , and
𝐴 ∈ ℝ𝑁×𝑁 (Adjacency matrix representing edges
between nodes).

2. GIN Layer 1: ℎ(1)𝑖 = ReLU
(

𝑊1𝑥𝑖 +
∑

𝑗∈ (𝑖) 𝑥𝑗
)

.

3. GIN Layer 2:ℎ(2)𝑖 = ReLU
(

𝑊2ℎ
(1)
𝑖 +

∑

𝑗∈ (𝑖) ℎ
(1)
𝑗

)

.

4. Node Embedding Aggregation: ℎout
𝑖 = ℎ(2)𝑖 (Embed-

ding for final prediction).
5. Classification Layer: 𝑦̂𝑖 = 𝑊3 ⋅ ℎout

𝑖 + 𝑏3, followed
by 𝑦̂𝑖 = Sof tmax(𝑦̂𝑖) (log-softmax for multi-class
classification).

2.5.4. Training Hyper-Parameters and Optimization
Adam combines first-order momentum with adaptive

second-moment estimates, coping well with sparse gradients
typical in graphs containing many isolated or low-degree
nodes. A learning rate of 0.01 strikes a balance between con-
vergence speed and stability; larger rates introduce greater
volatility in loss. Weight decay constrains parameter norms,
damping variance in downstream ensembles. A cap of 200
full-batch epochs was empirically sufficient for all three
models to reach saturation in the validation metric. Early

Table 2

GNN comparison (compact).

Aspect GCN GAT GIN

Strength Fast / simple Learns edge
weights

Rich structural
capacity

Weakness Weak long-range
signal

Costly / slower Over�t risk

Key feat. Fixed �lters Attention scores Sum aggregation
Use case Large, simple

graphs
Uneven edge
importance

Complex
classi�cation

Perf. Very fast Slower, �exible Slower, deeper

Figure 7: Graph Isomorphism Network (GIN) with sum ag-
gregation and two-layer MLPs. Node features are aggregated,
passed through ReLU activations, and classi�ed using a fully
connected layer with log-softmax.

Table 3

Hyperparameter summary for GNN models.

Param GCN GAT GIN

LR 0.01 0.01 0.01
Weight decay 0.0005 0.0005 0.0005
Epochs 100 100 100
Optimizer Adam Adam Adam
Loss CrossEntropy CrossEntropy CrossEntropy
Dropout � 0.6 �
Hidden units 16 8 (per head) 64Ö2 layers
Activation ReLU ReLU ReLU
Heads � 8 �
Msg passing Convolution Attention GINConv
Pooling � � Global add

stopping monitors illicit-class F1 on validation; if no im-
provement occurs over 25 epochs, training halts to preserve
generalization. The dataset’s positive class constitutes less
than 3% of the labelled nodes. Weighting the loss inversely
to class frequency is a common remedy; however, ablation
showed no substantial gains once dropout and ensemble
aggregation were introduced. Instead, evaluation empha-
sizes precision, recall, and F1 score to highlight minority
performance.

2.6. Ensemble Fusion Techniques
We train three graph neural network learners, each built

on a different principle. The Graph Convolutional Network
(GCN) treats the graph as a signal-processing domain. In
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every layer, it applies the same low-pass filter: each node’s
feature vector is replaced by the average of its features and
those of its direct neighbours after a learned linear transform.
The operation is stable and straightforward, excelling at
denoising. However, because identical weights are used on
all edges, the network can blur sharp class boundaries, par-
ticularly when the graph contains hubs that link dissimilar
regions. The Graph Attention Network (GAT) retains the
concept of neighborhood averaging but replaces fixed edge
weights with learned attention scores. For every node, the
network computes a score for each incident edge, normalises
the scores with a softmax, and then forms a weighted sum
of neighbour features. This mechanism allows the model to
focus on the most informative neighbours, capturing subtle
local motifs such as “one suspicious transaction among
many innocuous ones.” Attention, however, introduces extra
variance: if multiple attention heads focus on conflicting
subsets of neighbours, the predictions can become noisy.

The Graph Isomorphism Network (GIN) adopts an in-
jective aggregation rule that, in theory, can distinguish any
two non-isomorphic rooted subgraphs. Each GIN layer adds
a learnable scalar to the central node’s features, aggregates
the neighbor features using a simple sum, passes the result
through a multi-layer perceptron, and stacks several such
layers. This architecture can capture fine-grained structural
differences and, in our experiments, produces the highest
standalone accuracy. Its expressiveness, though, makes it
more sensitive to class imbalance and overfitting on small
data. Because the three architectures view the graph through
different lenses, they tend to make errors on different nodes.
We exploit that diversity with three fusion schemes.

Majority Voting Majority voting takes the final hard label
from each model and returns the class chosen by at least two
out of three. It costs almost no computation and guarantees
a correct ensemble decision whenever at most one model
misclassifies a node. The weakness is that a weak model
has precisely the same influence as a strong one, and no
information about confidence is used.

Equal-Weight Soft Voting Equal-weight soft voting uti-
lizes the full probability vectors that each model outputs
before the arg-max operation. For every node, we average
the three probability vectors and then pick the class with
the larger average probability. High-confidence predictions
dominate low-confidence ones, so a single model that is
firmly convinced of a class can outweigh two hesitant op-
ponents. This scheme usually improves minority-class recall
compared with hard voting [29].

Weighted Soft Voting Weighted soft voting keeps the
probability-level aggregation but lets the models contribute
unequally. We search a coarse grid of weight triples that
always sum to one and pick the triple that maximises accu-
racy on a held-out validation mask. The optimum typically
puts most weight on GIN, a moderate share on GAT, and a
small but non-zero share on GCN, reflecting their validation
performances. When applied to the test mask, this tuned

Table 4

Comparison of Ensemble Techniques.

Method Approach Insight Best for

Equal-weight soft avg. Equal
averaging of
GCN, GAT,
and GIN
outputs.

Simple
baseline;
equal model
in�uence.

Quick tests
without
tuning.

Tuned soft avg. Validation
grid search
for optimal
weights.

Adjusts
model
impact for
higher
accuracy.

When
models vary
in perfor-
mance.

Stacking Logistic
regression
on base
model
outputs.

Learns
nonlinear
relations
among
models.

When
robust,
blended
prediction is
needed.

ensemble consistently outperforms the best single model
because it still allows GCN or GAT to correct GIN in the
few situations where GIN is confident but incorrect [30].

Stacked Generalization Stacked generalization, which
we explored as an ablation, trains a small second-level clas-
sifier on top of the three sets of probabilities. We concatenate
the six probabilities each node receives two from each
base model and fit a multinomial logistic regression on the
validation nodes. The logistic layer can learn patterns such
as “trust GAT only if GCN and GIN disagree by more than
a given margin.” On our moderately sized dataset, the meta-
classifier offered only marginal gains and carried a higher
risk of overfitting the scarce illicit examples; therefore,
we report it for completeness but do not include it in the
production pipeline.

As majority voting is cost-free insurance against single-
model slips, equal-weight soft voting adds confidence aware-
ness, weighted soft voting turns that idea into a validation-
tuned ensemble that reliably beats the strongest individual
learner, and stacking remains a promising but data-hungry
extension for future work.

3. Evaluation Metrics and Rationale
The evaluation of fraud detection models requires met-

rics that not only measure overall performance but also cap-
ture class-specific behavior in highly imbalanced datasets.
The confusion matrix provides a foundational representa-
tion of classification outcomes by quantifying true positives
(TP), true negatives (TN), false positives (FP), and false
negatives (FN) [32]. It enables detailed assessment of de-
tection reliability and operational risk, particularly in anti-
money laundering (AML) contexts, where false positives
inflate compliance workloads and costs, while false nega-
tives correspond to undetected illicit transactions that pose
regulatory and reputational risks. The confusion matrix is
defined as:

[

TP FP
FN TN

]
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and serves as the analytical basis for computing higher-level
performance indicators.

Accuracy, given by

Accuracy = TP + TN
TP + TN + FP + FN

,

offers a broad sense of correctness but can be misleading
in imbalanced scenarios where licit transactions dominate.
Therefore, it must be complemented by precision and recall
to provide a realistic view of the model’s detection effective-
ness.

Precision and recall together quantify the balance be-
tween alert quality and coverage. Precision,

Precision = TP
TP + FP

,

measures the proportion of flagged cases that are truly illicit,
emphasizing the system’s reliability and its impact on com-
pliance workload. Recall,

Recall = TP
TP + FN

,

reflects the model’s ability to identify all relevant positive
instances, a critical factor for regulatory compliance and risk
prevention. The F1-score unifies these two aspects through
their harmonic mean:

F1-Score = 2 ⋅ Precision ⋅ Recall
Precision + Recall

,

providing a balanced evaluation that penalizes extreme
disparities between them. In AML applications, this combi-
nation of metrics delivers a nuanced understanding of model
performance, ensuring high detection coverage without
overwhelming investigators with false alerts.

3.1. Weighted-Average Metrics
For multi-class evaluations, we compute weighted av-

erages that take into account class imbalance. Each class-
specific metric is weighted by the number of true instances
(support):

Weighted Average =
∑𝐶

𝑖=1𝑤𝑖 ⋅ 𝑚𝑖
∑𝐶

𝑖=1𝑤𝑖

Here, 𝑚𝑖 denotes the metric for class 𝑖, and 𝑤𝑖 its cor-
responding support. These aggregate metrics provide an
interpretable summary while ensuring that minority classes
are not overwhelmed by dominant ones. All metrics are com-
puted on the held-out test set using standard implementa-
tions from the scikit-learn library to ensure reproducibility
and comparability across models. Notably, we refrain from
any threshold tuning; class predictions are derived directly
from the argmax of posterior probabilities. To contextualize
these metrics, our fraud detection pipeline incorporates three
graph neural network (GNN) architectures GCN, GAT, and
GIN each optimized through prior hyperparameter tuning.

These models are trained independently for 200 epochs using
the Adam optimizer, with the validation F1-score tracked
after each epoch. The best-performing checkpoints are re-
tained for later fusion.

Post-training, predictions are generated for each test
node, and three fusion strategies are applied: (i) hard ma-
jority voting on predicted labels, (ii) soft voting weighted by
each model’s validation F1-score, and (iii) meta-learning via
a lightweight stacker trained on validation outputs. Ensem-
ble predictions are then evaluated on the test mask using all
the aforementioned metrics, offering a granular and rigor-
ous assessment of model performance. This comprehensive
evaluation framework anchored in diverse GNN architec-
tures and principled ensemble methods forms the back-
bone of our detection system. The subsequent sections will
delve into ablation studies, temporal robustness checks, and
interpretability analyses to further substantiate our design
decisions, while withholding sensitive numerical outcomes.

3.2. Graph Convolutional Network Results
The Graph Convolutional Network (GCN) serves as

the single-model baseline for subsequent ensemble compar-
isons. Training curves reveal rapid convergence: within the
first five epochs, accuracy surpasses 0.90 and recall exceeds
0.85, after which all four tracked metrics show only marginal
incremental improvement. By epoch twenty, the training and
validation trajectories overlap almost perfectly, suggesting
neither prolonged underfitting nor significant overfitting.
The steady gap between precision and recall curves is note-
worthy. Precision gradually increases throughout training
reaching roughly 0.93 on the validation split by epoch one
hundred whereas recall plateaus earlier, near 0.89. This
divergence indicates that as optimisation proceeds, the net-
work becomes increasingly conservative, sacrificing some
coverage of the illicit minority to maintain a low false-alarm
rate. The accompanying F1-score surface mirrors this trade-
off, settling in the high-0.80s range as the model balances
the growing precision with the more static recall.

Turning to the confusion matrix on the held-out test set,
two key patterns emerge. First, licit transactions dominate
correct classifications: 4,189 true negatives correspond to
99.2 percent of all licit examples, while only 33 licit nodes
are mistakenly labelled illicit. This confirms that the GCN
internalises the majority-class structure exceedingly well.
Second, performance on illicit accounts is notably weaker.
The model recovers 203 true positives yet misses 232 il-
licit nodes more than half of the actual positive instances.
Consequently, the illicit recall is just under 0.50, while illicit
precision, at approximately 0.86, remains respectable. The
misbalance illustrates the typical difficulty of learning from
skewed data: the classifier hesitates to label nodes illicit
unless evidence is overwhelming, thereby reducing spurious
alerts but letting many suspicious addresses slip through
undetected.

Probability-density plots further clarify the decision be-
haviour. Likelihood predictions form a sharp spike near zero
probability of illicitness for both training and test partitions,
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Figure 8: Training, validation, and test curves for accuracy, precision, recall, and F1-score across 100 epochs. The model achieves
stable and high performance with minimal over�tting.

Figure 9: Confusion matrix on the test set for the Graph Con-
volutional Network (GCN). The model achieves high precision
on illicit nodes (86%) but moderate recall (54.3%), re�ecting
a conservative classi�cation under class imbalance. Licit nodes
are correctly classi�ed with high accuracy (98.6%).

confirming strong calibration for the majority class. Illicit
predictions, by contrast, exhibit a broader peak near unity
with a noticeable long tail extending toward intermediate
probabilities. The overlap between tails explains why many
illicit nodes are ultimately classified as licit; their probability
mass falls below the default 0.50 threshold. A threshold
sweep or cost-sensitive adjustment could improve recall, but
such tuning would raise the false-positive burden analysts
must inspect. The classification report quantifies these in-
sights numerically, as shown in Table 5.

Table 5

Classi�cation Report for GCN on the Test Set

Class Precision Recall F1-Score Support

Illicit 0.86 0.47 0.61 435
Licit 0.95 0.99 0.97 4222

Accuracy 0.94 4657
Macro avg 0.90 0.73 0.79 4657
Weighted avg 0.94 0.94 0.94 4657

The classification report quantifies these insights numer-
ically. Overall test accuracy reaches 0.94, and the weighted
F1-score mirrors that value because licit observations domi-
nate. Macro-averaged scores paint a more balanced picture:
macro recall is 0.73, indicating the model’s shortcomings
on the minority class. Importantly, the weighted precision
of 0.94 shows that when the GCN issues an illicit flag,
it is usually correct, an attractive property for operational
deployment where analyst time is costly.

3.3. Graph Attention Network Results
The Graph Attention Network (GAT) introduces neigh-

borhood level self-attention to weight the influence of in-
dividual neighbours, yet its empirical behaviour diverges
markedly from the earlier GCN baseline. The training curves
exhibit a two-phase trajectory. During the first ten epochs,
accuracy, recall, and F1 score rise steeply as the model
learns coarse structural patterns; validation accuracy sur-
passes 0.85 almost immediately. Thereafter, the learning
pace slows and plateaus around epoch forty, with test and
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Figure 10: Density plot of GCN-predicted probabilities. Licit
nodes form a sharp peak near 0, indicating strong certainty,
while illicit nodes show broader distributions with tail overlap,
contributing to missed detections.

validation accuracy settling just under 0.91. Precision fol-
lows a different path. It spikes above 0.90 in the initial
iterations, then drops and oscillates in the 0.87-0.89 range
before gradually returning to 0.90 late in training. These
oscillations imply that, although attention coefficients are
rapidly tuned, subsequent weight updates struggle to sta-
bilise a decision boundary that satisfies both classes. Recall
traces the familiar under-represented-class pattern: an initial
surge to roughly 0.75 on validation, followed by a gradual
taper that ends near 0.90 for licit but stalls below 0.20 for
illicit on the test split. The disparity between class-specific
recalls foreshadows the outcome of the confusion matrix.

The matrix illustrates pronounced conservatism toward
the minority class. Only 81 illicit accounts are correctly iden-
tified, while 354 illicit nodes pass through as false negatives
the model fails to act on more than four fifths of the suspi-
cious activity. Simultaneously, licit protection is exceptional,
with 4,202 correct negatives and only 20 false positives,
corresponding to a specificity of 99.5%. Precision for illicit
predictions remains reasonably high at 0.80, confirming that
the classifier rarely cries wolf, yet it hesitates to raise alarms
even when warranted. Such behavior is consistent with an
attention mechanism that learns to rely heavily on dominant
licit neighbourhood features. When illicit nodes intermingle
with many innocuous neighbours, their aggregate signal is
diluted, causing the model to withhold a favorable decision.

Probability-density estimates underscore this dynamic.
The green licit curves cluster densely near the zero predicted
probability of illicitness, displaying a modest right-hand tail
that extends to around 0.45. In contrast, the red illicit curves
peak close to unity but are much broader, extending down-
ward past 0.6 and overlapping substantially with the licit
tail. This overlap explains the elevated false-negative count:
many illicit examples receive moderate-probability scores
that fall below the default decision threshold. Narrowing
the recall gap would require either lowering that threshold,
at the cost of more false positives, or retraining with loss

Table 6

Classi�cation Report for GAT on the Test Set

Class Precision Recall F1-Score Support

Illicit 0.80 0.19 0.30 435
Licit 0.92 1.00 0.96 4222

Accuracy 0.92 4657
Macro avg 0.86 0.59 0.63 4657
Weighted avg 0.91 0.92 0.90 4657

weighting or focal loss to press the network into assigning
higher attention to minority-class cues. The classification
report formalises these observations, as shown in Table 6.

The classification report formalises these observations.
Overall accuracy reaches 0.92 and the weighted F1 settles at
0.90, but the macro averages expose the imbalance: macro
recall is only 0.59 and macro F1 0.63. The model therefore
excels in broad discrimination everyday licit behaviour is
almost perfectly handled yet remains reluctant to affirma-
tively tag illicit nodes. Inspection of attention maps con-
firms that most heads concentrate weights on high-degree
licit hubs, mirroring the class distribution; low-degree illicit
nodes often fail to command sufficient collective weight.
Remedies may include increasing the number of heads to
diversify importance patterns, reducing dropout to let subtle
signals propagate, or injecting handcrafted edge features that
distinguish suspicious flows more sharply.

In essence, the GAT delivers exceptional precision with
minimal false alarms, making it attractive for scenarios
where investigative resources are scarce and false positives
must be tightly controlled. However, its cautious stance pro-
duces a recall deficit that leaves a majority of illicit transac-
tions undetected. These complementary strengths and weak-
nesses set the stage for ensemble schemes. By blending
GAT’s discriminative precision with the broader recall of
other backbones, one can exploit the model’s selective at-
tention while mitigating its conservative bias.

3.4. Graph Isomorphism Network Results
The Graph Isomorphism Network (GIN) provides the

most balanced single-model performance among the three
backbones, reflecting its higher expressive capacity. Train-
ing curves reveal a distinctive learning pattern. Accuracy and
recall leap to ninety per cent almost immediately an artefact
of the dominant licit class then climb slowly but steadily
to approach 0.97 by epoch one hundred. Precision follows
a more gradual but monotonic ascent, beginning in the
low 0.80s, oscillating mildly during the first thirty epochs,
and eventually plateauing above 0.95. This late-stage uptick
suggests that the injective sum-aggregator progressively dis-
entangles illicit feature signals that were initially masked by
neighbourhood noise. The F1-score mirrors this evolution,
rising from a stable 0.85 plateau to the mid-0.95 range as
precision catches up with recall.

The confusion matrix on the test partition highlights the
network’s improved handling of the minority class. Of the
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Figure 11: GAT model training metrics across 100 epochs. Accuracy, recall, and F1-score rise quickly, then plateau. Precision
�uctuates before recovering. Recall remains strong for licit nodes but stalls for illicit cases, re�ecting the model's conservative
bias and reliance on dominant neighborhood patterns.

Figure 12: Confusion matrix for the GAT model on the test
set. The model shows very high speci�city (99.5%) with only
22 false positives on licit nodes, but relatively low recall
for illicit nodes (22.5%), suggesting a conservative decision
boundary that prioritizes precision by relying on dominant licit
neighborhood features.

435 illicit nodes, 323 are correctly detected, yielding a recall
of roughly seventy-four per cent far superior to the GAT and
comfortably ahead of the GCN. Only 112 illicit instances
escape detection, while false positives remain modest at
66, corresponding to a licit precision of 0.98. These fig-
ures indicate that the GIN succeeds in balancing vigilance
and restraint: it more than doubles the illicit-detection rate
achieved by the GAT while introducing just forty-six addi-
tional false alarms.

Figure 13: Density plots of predicted probabilities from the
GAT model for licit and illicit nodes, split by training and
test sets. The licit class probabilities cluster strongly near zero,
showing con�dent predictions, while the illicit class exhibits a
broad peak near one but with a long tail extending below 0.6.
This overlap explains the high false negative rate, as many
illicit nodes receive intermediate scores below the 0.5 decision
threshold.

Probability-density plots provide further insight into de-
cision dynamics. The licit probability mass clusters sharply
around zero, with a thin tail extending toward 0.1, indicating
confident, yet pessimistic, predictions. The illicit distribu-
tion forms an even narrower peak near one, with noticeably
less spread than either the GCN or GAT. The reduced overlap
between class density explains the elevated precision and F1:
few nodes inhabit the ambiguous middle-probability region.
Moreover, the slight shift of illicit density toward perfect
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Figure 14: Training curves for GIN showing steady improvements in accuracy, precision, recall, and F1-score over 100 epochs.

Figure 15: Confusion matrix for the Graph Isomorphism
Network (GIN) showing strong detection of illicit nodes with
moderate false positives.

probability implies that the GIN’s two-layer MLPs amplify
minority-class signals once they have been isolated, leading
to crisper separation. The classification report quantifies
these trends, as shown in Table 7.

The classification report quantifies these trends. Overall
accuracy reaches 0.962, the highest among all standalone
models. Weighted precision, recall, and F1 all exceed 0.96,
reflecting the overwhelming licit majority; however, macro
averages tell a more balanced story: macro precision sits just
over 0.90 and macro recall at 0.86, each markedly better
than earlier baselines. Notably, the illicit-class precision of
0.83 indicates that roughly one in six flagged nodes is a false

Table 7

Classi�cation Report for GIN on the Test Set

Class Precision Recall F1-Score Support

Illicit 0.8303 0.7425 0.7840 435
Licit 0.9738 0.9844 0.9790 4222

Accuracy 0.9618 4657
Macro avg 0.9020 0.8634 0.8815 4657
Weighted avg 0.9604 0.9618 0.9608 4657

alarm acceptable for investigative workflows while the illicit
recall of 0.74 means that more than two-thirds of suspicious
activity is surfaced.

Inspection of intermediate embeddings reveals that GIN
learns to cluster illicit nodes in a distinct region of the
latent space, even when their immediate neighbors are licit.
This capability stems from the injective sum aggregator,
which preserves multiset information lost by mean or at-
tention pooling. Consequently, illicit nodes connected to
many small-degree accomplices retain unique aggregate sig-
natures rather than being diluted by licit hubs. The trade-
off is slight instability early in training, visible in the pre-
cision oscillations, as the model fine-tunes the 𝜖 param-
eters that balance self-information against neighbourhood
sums. Taken together, the GIN demonstrates that stronger
expressivity and an injective message function yield tangible
gains in minority-class detection without sacrificing overall
accuracy. It sets a high single-model bar and, by virtue of its
error profile, offers complementary strengths for ensemble
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Figure 16: Predicted probability distributions for licit and illicit
classes by the Graph Isomorphism Network (GIN), showing
clear class separation.

fusion: higher recall than the attention network and higher
precision than the convolutional baseline.

3.5. Ensemble Model Fusion
Ensembling the outputs of the three heterogeneous GNN

backbones can be thought of as putting several detectives
in the same room and asking them to compare notes. Each
“detective” (the GCN, GAT, and GIN) notices different
clues: the GCN excels at neighborhood smoothness, the
GAT focuses on a few influential neighbors, and the GIN
retains very fine-grained multisets signatures. The ensemble
techniques differ mainly in how loudly each detective’s opin-
ion is allowed to speak when the final verdict is cast. Equal-
weight soft voting lets every voice count equally, while
tuned-weight voting adjusts the microphone volume based
on prior reliability. Stacking hires a new supervisor who
listens to the detectives and then makes their own decision.
The following paragraphs break down how each scheme
behaved on the test set and finish with a succinct ranking.

3.5.1. Equal-Weight Soft Voting
The most straightforward fusion was to average the

posterior probabilities output by the three base networks
and take the class with the higher mean probability. This
equal-weight mixture immediately topped the best single
model, pushing global accuracy to 0.963 and macro F1 to
0.876. The confusion matrix recorded 290 accurate illicit
detections, 145 missed illicit nodes, and only 27 licit ad-
dresses incorrectly flagged. These numbers translated to
an illicit precision of roughly 0.915 and a recall of two-
thirds. Probability-density curves revealed a double-peaked
profile with a healthy gap between the peaks, but still a
significant overlap around the 0.35-0.45 probability region,
indicating that borderline samples were the Achilles’ heel.
In operational terms, this ensemble would cut false alarms
to a trickle yet still miss one illicit transaction out of three,
an acceptable baseline but not yet optimal for stringent
compliance demands.

Figure 17: Confusion matrix of the tuned-weight soft-vote
ensemble, showing improved illicit detection with balanced
false positives.

Figure 18: Predicted probability distributions for licit and illicit
classes by the tuned-weight ensemble on training and test sets.

3.5.2. Tuned-Weight Soft Voting
Rather than treating the three backbones as equally reli-

able, a coarse grid search on the validation split was used to
learn fractional weights that maximised validation accuracy.
The search settled on a surprisingly asymmetric setting: zero
weight for the GCN, 0.45 for the GAT, and 0.55 for the
GIN. On the held-out test data, this tuned mixture nudged
accuracy up only a hair to 0.963, yet it reshaped the error mix
in a favourable way. Accurate illicit detections jumped to 312
while false positives increased modestly to 46, leaving illicit
precision at 0.872 and recall at 0.717. The probability plot
confirmed that the illicit peak slid leftward, meaning more
suspicious nodes now crested the 0.5 decision boundary.
Eliminating the GCN from the blend reduced probability
redundancy, allowing the GAT, GIN duo to dominate, cap-
italizing on GAT’s selectivity and GIN’s expressive recall.
For day-to-day monitoring, this version strikes a sweet spot:
fewer than fifty benign alerts across more than 4,000 legiti-
mate nodes, yet seven out of ten illicit accounts flagged for
review.
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Figure 19: Confusion matrix for the tuned-weight soft voting
ensemble.

Figure 20: Confusion matrix for the stacking ensemble with
logistic regression meta-classi�er.

3.5.3. Stacked Generalisation
Stacking trained a logistic-regression meta-classifier on

six input features: the two-class probabilities from each
base model. Because the meta-learner saw real labels in
validation, it could discover nonlinear combinations cases
where moderate agreement between two models outweighed
strong confidence from one. On test data, stacking achieved
an accuracy of 0.962, slightly below tuned voting, but in-
creased illicit recall to 0.740. The trade-off was a dip in
illicit precision to 0.836 and an uptick in false positives
to 63. The confusion matrix showed 322 successful illicit
catches the largest of the three ensembles paired with ap-
proximately 1.5% of licit traffic wrongly flagged. This result
reflects stacking’s willingness to widen the detection net; it is
attractive for periodic forensic sweeps where catching every
last suspicious pattern is more important than keeping the
alert queue short.

3.5.4. Overall Comparison
Weighing the three techniques against practical require-

ments, tuned-weight soft voting emerges as the most bal-
anced choice. It improves illicit recall by roughly five per-
centage points over the equal-weight vote while holding pre-
cision twenty-four points higher than stacking. The alert bur-
den remains low only forty-six benign transactions were mis-
classified and coverage of illicit activity approaches three-
quarters. Equal-weight averaging is useful when model gov-
ernance rules require symmetric treatment of contributors,
and stacking offers a high-recall setting for aggressive inves-
tigations. However, for routine, resource-constrained moni-
toring, the validation-tuned soft-vote ensemble delivers the
best blend of reliability, coverage, and manageability.

3.6. Overall Discussion of Experimental Findings
The experimental campaign presents a coherent picture

of how architectural choices and fusion techniques jointly
influence the effectiveness of fraud detection on the Elliptic
transaction graph. The single-model stage established three
distinct performance profiles. The Graph Convolutional Net-
work offered the highest minority-class precision among
individual backbones, flagging illicit nodes with roughly
six correct calls for every false alarm, yet its conservative
threshold left more than half of the suspicious addresses
undetected. The Graph Attention Network pushed precision
even higher for legitimate traffic, virtually eliminating false
positives, but suffered from the weakest recall on illicit
accounts because its neighbor-weighting mechanism tended
to downplay low-degree addresses on the graph’s periph-
ery. The Graph Isomorphism Network delivered the most
balanced single-model result: its injective message aggrega-
tor surfaced nearly three-quarters of all illicit nodes while
maintaining a precision figure above 80% and an overall
accuracy of nearly 97%. These complementary strengths
and weaknesses confirmed that the three architectures make
partially independent errors, an essential prerequisite for
ensemble gain.

Moving to combination strategies, equal-weight soft vot-
ing provided the first evidence that error diversity could be
exploited. Simply averaging posterior probabilities raised
both minority-class precision and recall above the GCN
baseline, narrowing the gap between detection coverage and
false-alert volume without requiring any parameter tuning.
Nonetheless, a noticeable share of illicit transactions re-
mained hidden within the overlapping tails of the class-
probability distributions, motivating a more calibrated fu-
sion.

Validation-tuned soft voting addressed this need by
learning coefficients that maximize validation accuracy. The
optimiser effectively silenced the GCN contribution and
leaned on the complementary GAT-GIN pair. The outcome
was an apparent reduction in false negatives approximately
fifteen percent relative to equal weighting while limiting the
rise in false positives to fewer than twenty additional licit
nodes. From an operational vantage, this variant provides
an appealing compromise: seven out of ten illicit flows
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are exposed while the analyst workload increases only
marginally. The shift of the illicit probability peak toward
the decision boundary, as seen in density plots, testifies to
the ensemble’s heightened sensitivity without undue loss of
specificity.

Stacked generalisation further enhanced sensitivity by
allowing a logistic regression meta-learner to fit nonlinear
relationships among base outputs. This model achieved the
highest illicit recall of all tested systems, capturing nearly
three out of four suspicious addresses. The trade-off was
a modest decline in precision and a correspondingly larger
false-alert burden acceptable in scenarios where exhaustive
coverage outweighs triage efficiency, but potentially burden-
some for routine compliance monitoring. The confusion ma-
trix highlights this balance: stacking yields approximately
seventeen extra illicit detections compared to tuned voting,
at the cost of about the same number of additional false pos-
itives. Taken together, these findings illustrate the spectrum
of choices available to practitioners. Single models provide
interpretable baselines and rapid inference. However, they
embody stark bias variance trade-offs: the GCN favors pre-
cision, the GAT maximizes specificity for legitimate traffic,
and the GIN pushes recall. Ensemble methods temper these
extremes. Equal-weight averaging is a quick-win option
when validation data are scarce, already outperforming any
lone backbone. Weight tuning refines the mixture with mini-
mal complexity and yields the best balanced F1-score in the
present study. Stacking offers a high-recall configuration at
the expense of reviewing more benign transactions, suitable
for intensified investigative phases or retrospective audits.

Operationally, the tuned soft-vote ensemble stands out
as the most versatile solution. It delivers substantial im-
provement in minority-class detection while preserving the
low false-positive rate critical to resource-constrained AML
teams. Moreover, the grid-search calibration procedure is
straightforward to automate and re-run as new labelled data
arrive, allowing the system to adapt over time without an
architectural overhaul. The experiments, therefore, validate
the overarching hypothesis: heterogeneous GNN backbones,
when combined through thoughtful probabilistic fusion, sur-
pass the limitations of any individual model and offer a
scalable pathway toward more reliable cryptocurrency-fraud
surveillance.

4. Conclusion
This study set out to improve transaction-level fraud de-

tection in the Bitcoin network by uniting three architecturally
diverse graph-neural backbones GCN, GAT, and GIN-under
a suite of ensemble strategies. Individually, each model
illuminated a different corner of the detection problem:
the GCN delivered the highest single-model precision, the
GAT virtually eliminated false positives for licit traffic, and
the GIN achieved the strongest recall without sacrificing
overall accuracy. Their divergent error patterns confirmed
that no single architecture was sufficient for comprehensive
coverage of illicit activity on the Elliptic dataset.

Ensembling the models yielded measurable gains. Even
simple equal-weight soft voting outperformed individual
networks, confirming that architectural diversity enhances
decision boundaries. Validation-tuned soft voting offered
the best balance, detecting over 70% of illicit nodes with
minimal false alerts ideal for compliance use. Stacked gen-
eralization achieved the highest recall, underscoring meta-
learning’s advantage when larger alert queues are man-
ageable. Overall, the calibrated fusion of diverse GNNs
mitigates the precision–recall trade-off in imbalanced fraud
detection. The modular framework allows easy integration
of new models or features, with future work focusing on
adaptive weighting and explainable ensemble outputs for
improved forensic insights.
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