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Abstract

Surface electromyography (SEMG) is a rich source of physiological data that reflects human
movement intentions. The recognition of gestures through sEMG has garnered significant
interest in the realms of human-computer interaction and rehabilitation. Currently, the
majority of research on gesture recognition utilizing sSEMG signals relies on discrete seg-
mentation techniques, often overlooking the nuances of continuous and natural movements.
A novel gesture recognition network based on LSTM for recognizing gestures from sEMG
signals is prpopsed. The sEMG sensors are strategically positioned based on anatomi-
cal and muscular functions to optimize the capture of relevant physiological signals. In
this study, finger curvature is employed to characterize gesture states, allowing each ges-
ture at any given moment to be represented by a collection of varying finger curvatures,
thereby enabling continuous gesture recognition. The experimental results indicate that
this method significantly enhances the ability to mine representations from sEMG signals,
offering valuable insights for deep learning models focused on human gesture recognition.

Keywords: surface electromyography (SEMG), gesture recognition, long short-term mem-
ory (LSTM) network

1 Introduction

As human-computer interaction technology continues to evolve and become widespread,
gesture recognition, hailed for its natural and intuitive to interaction, has garnered increas-
ing interest and focus. Within the domain of gesture recognition technologies, SEMG-based
gesture recognition stands out for its practicality and broad range of potential applications
(Chaves et al. (2024); Wang et al. (2024); Liu et al. (2024)). This method is capable of dis-
cerning muscle activities in various parts of the human body, including fingers, palms, and
wrists, by capturing and analyzing surface electromyographic signals, thereby facilitating
the identification and control of gestures.

In contrast to conventional gesture recognition methods that rely on visual or inertial
sensors, technology that leverages sSEMG for gesture recognition demonstrates superior re-
silience and consistency, enabling reliable and precise recognition of gestures across varying
lighting and posture conditions. The application and proliferation of gesture recognition
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Figure 1: The comprehensive framework of the proposed approach

technology, underpinned by sEMG, have been notably evident in smart home technologies,
advanced medical applications, and the control of prosthetic limbs. This approach has
emerged as a significant area of exploration within the realm of human-computer interac-
tion.

Nevertheless, the majority of research efforts have concentrated on the discrete clas-
sification of pre-defined gestures. Once signal patterns change, the recognition accuracy
will fade. To address the limitation above, continuous motion estimation through sEMG is
better suited to enhance practical application scenarios (Li et al. (2024)). Currently, the
regression model of continuous motion estimation that leverages sEMG signals often results
in redundant mappings between sEMG signals and their corresponding outputs.

To counter these challenges, deep learning based methodologies to accomplish contin-
uous motion estimation are focused, which do not necessitate an intricate understanding
of physiological mechanisms and are adept at capturing the spatial relationships within
sEMG data. By targeting finger curvature, this study establishes the transformation from
sEMG data to finger curvature using the LSTM network, thereby facilitating the continuous
and accurate gesture recognition. The experimental outcomes confirm the validity of this
approach.

2 Method

Figure 1 showcases the comprehensive framework of the proposed approach. Initially, the
sEMG signals from the forearm are captured during the performance of a designated set of
task gestures. Once the signals have undergone preliminary processing, they are fed into
the LSTM network to derive the corresponding finger curvatures, ultimately yielding the
continuous gesture data.

2.1 LSTM

The LSTM model is architected in two main segments. Initially, the input sEMG data un-
dergoes feature extraction through the CNN layer, yielding a set of feature representations.
Subsequently, these features are sequentially conveyed to the LSTM layer in accordance
with their temporal order. The LSTM integrates the output from the preceding CNN layer
with the current input, synthesizing a coherent time series. Such a design enhances the
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Figure 2: Overall architecture of LSTM model

LSTM’s capacity to manage time series data processing tasks effectively. Figure 2 illus-
trates the overall architecture of the LSTM model.

Initially, the sSEMG data is segmented into multiple parts using a sliding window tech-
nique, with each segment being reshaped into an L x C' format for input into the CNN. Here,
the input dimensions are 20 x 5, where the number 20 signifies a 200ms active window width,
and 5 corresponds to the five channels of SEMG data acquisition. The CNN architecture
comprises two convolutional layers, two pooling layers, and two fully connected layers. The
first and second convolutional layers include 128 and 64 3 x 3 filters, respectively. Both
utilize ReLU as their activation function. The first and second pooling layers perform 2 x 2
max pooling. Following the initial pooling layer, a Dropout layer with a parameter of 0.5
is incorporated to mitigate the risk of model overfitting. The addition of a Batch Normal-
ization layer subsequent to each convolutional layer serves to normalize the layer outputs,
thus enhancing the model’s convergence rate and overall generalization capabilities. The
output features of the CNN are represented as the vector v = [v1,ve, ..., v,].

The output vector from the CNN layer serves as the input for the LSTM layer, which
is responsible for predicting the finger curvature. The fundamental unit of an LSTM layer
is composed of a forget gate, an input gate, and an output gate. These gates enable the
LSTM to more efficiently decide which information to discard and which to preserve. Given
v and h, the update process of the LSTM unit at time step ¢ can be articulated as follows:

fe=0(W;y - [he—1,v¢] + by). (1)
it = o(W; - [he—1,v] + b;). (2)
& — tanh(W, - [he_1, ;] + be). (3)
ct=fi- o1 +it- G (4)
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0 = O'(WO . [htfl, 'Ut] + bo). (5)

hy = o4 - tanh(cy). (6)

where f; denotes the forget gate, i; signifies the input gate, o; indicates the output gate,
¢t represents the cell state, o is the sigmoid activation function, tanh refers to the hyper-
bolic tangent activation function, and W along with b stand for the weights and biases,
respectively. The LSTM network comprises two layers of LSTM units followed by a fully
connected layer.

2.2 Finger Curvature

Fingers are pivotal in defining gestures, suggesting that gesture recognition can be effectively
reduced to the recognition of finger states. The movement of the fingers can be essentially
viewed as the motion occurring at the metacarpophalangeal joints. These joints serve as
the primary control points for finger movement, with the interphalangeal joints bending
and extending around them, a concept captured by the term “finger curvature”. The finger
curvature for each finger, denoted as C; where i = 1,2,3,4,5, represents the individual
curvature of the five fingers respectively, with C; ranging within the interval [0,1]. A
gesture G is thus represented by the collective curvatures of the fingers, expressed as G =
[Cy,Ca,Cs,Cy,Cs). This set of values encapsulates the gesture through the curvatures of
each individual finger. The output of the LSTM network is reshaped to 5-dimensional vector
and its elements are normalized to the interval [0, 1], as the predicted finger curvature.

3 Experiment

3.1 Settings

The experiment data set includes 183560 samples of 52 kinds of actions, and each gesture has
the same number of samples. The accuracy (Acc) index is utilized to evaluate the recognition
of gestures. The comparison methods in the experiment include existing researches as
follows: Compact CNN (Chen et al. (2020)), MV-CNN (Wei et al. (2019)), CNN+LSTM
(Khushaba et al. (2020)), CNN+CviT (Shen et al. (2022)), and CNN+transfer learning
(CNN+TL) (Cété-Allard et al. (2019)).

3.2 Results

As shown in Table 1, although the above methods have achieved good results, the model
proposed in this paper can provide more accurate gesture recognition results than them.

4 Conclusion

This study introduces a gesture recognition approach that leverages an LSTM network, with
a CNN for extracting spatiotemporal features, achieving state-of-the-art gesture recognition
classification accuracy on a vast dataset. Subsequent research will aim to minimize the
quantity of sSEMG sensors used without compromising the model’s efficacy, as the reduction
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Table 1: Gesture recognition results of different models

Method Window size(ms) Acc(%)
Compact CNN 200 70.10
MV-CNN 200 75.90
CNN-+LSTM 260 84.57
CNN+CviT 200 76.93
CNN+TL 260 69.08
Proposed 200 88.50

of sensors can lead to a loss of signal information. Thus, accurately identifying gestures
with a limited number of SEMG sensors continues to pose a significant challenge. Moreover,
enhancing the model’s robustness is also a complex issue that needs to be addressed. It
is proposed that future work could involve altering the dataset to reflect divisions among
different individuals rather than repetitive actions within the same subject. Additionally,
the incorporation of generative adversarial networks may be explored to further augment
the data and improve the model’s performance.
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