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Abstract

Amidst ongoing efforts to manage the spread of infectious diseases, measures are taken to
safeguard the resumption of on-campus activities. This ensures the academic continuity
and the safety of the community. To achieve this, an analysis of disease transmission risks
has been conducted, focusing on areas within campuses such as dining halls, lecture the-
aters, and classrooms. By leveraging an enhanced Susceptible-Exposed-Infectious-Removed
(SEIR) model, we have developed a risk assessment model that takes into account dynam-
ics between susceptible, latent, infected and displaced groups. After the extraction of rel-
evant features, features undergo preprocessing steps. They are monotonically incremented
and smoothed to eliminate noise, and then serve as input and labels for training stacked
denoising autoencoder. The outcome of analysis indicates that the implementation of in-
terventions can significantly mitigate the spread of disease. It can decrease the frequency
of infection interactions, lower the transmission rate, and reduce the peak numbers of in-
fected and latent cases by 61% and 72%, respectively. In essence, our approach has proven
to be effective in controlling the spread of diseases in key university areas. Moreover, it
provides an accurate predictive model for the number of infections, offering a valuable tool
for managing and preventing outbreaks within these communities.

Keywords: Susceptible-Exposed-Infectious-Removed (SEIR) model, epidemic transmis-
sion, deep prediction model

1 Introduction

The coronavirus pandemic, known as COVID-19, is distinguished by its rapid spread, exten-
sive reach, and the challenges it poses to containment and mitigation efforts (Abroon Qazi
and Akram (2021); Moinet et al. (2018)). Until June 29, 2020, China had recorded 85,227
confirmed COVID-19 cases, with 4,648 fatalities and 80,055 individuals successfully recov-
ering. With the situation now under more manageable control, there has been a gradual
and structured return to normalcy in terms of work and production activities. Additionally,
there is a growing demand for the reopening of colleges and universities.
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However, unlike primary and secondary schools, universities and colleges have specific
areas that are inherently prone to higher risk due to the dense population and close inter-
actions among students and staff, such as dining halls, dormitories, and lecture buildings.
These venues are hotspots for potential virus transmission. Should effective risk manage-
ment and control strategies not be implemented, there is a significant risk of resurgence,
which could lead to a rapid and widespread spread of the virus, potentially igniting another
large-scale outbreak. Therefore, it is imperative that precautionary measures are stringently
enforced to prevent such a scenario.

The National Health Commission and the Ministry of Education have published a tech-
nical guideline aimed at curbing the spread of infectious diseases within higher education
institutions, highlighting the importance of focusing on areas within these establishments
that are critical for disease control. Consequently, conducting a thorough risk assessment in
these pivotal zones and devising targeted management and control strategies are essential
steps towards facilitating a secure return for both academic staff and students, as well as
ensuring the smooth and safe functioning of educational facilities.

The related works of epidemic risk analysis and management focus on the two core
components: epidemic risk evaluation and epidemic risk propagation. For epidemic risk
evaluation, Leitch et al. (2019) reviewed methods in predicting the thresholds of epidemic
areas. Zhang et al. (2022) utilized spatio-temporal infected populations data in Wuhan
before March 2020 to evaluate the influence of spatial distribution of urban facilities via
generative adversarial networks predicting the infected risk. Kumar et al. (2024) proposed a
SEIR-based evaluation model to predict the possible pandemic dynamics on daily COVID-
19 case data in USA and main European countries, indicating that long-lasting moderate
measures were better than rigid or loose ones. For epidemic risk propagation, Kudryashov
et al. (2021) analyzed the propagation of the epidemic by refining the conventional SIR
model. Chen et al. (2023) developed a toolkit for predicting the degree of epidemic risk
propagation of COVID-19 in some high-income countries via multifactorial analysis. Li
et al. (2024) established the equation of epidemic propagation and designed a threshold-
based epidemic propagation model, which suggested promoting positive information and
curbing negative information could help prevent epidemic risk propagation.

Nevertheless, the aforementioned studies seldom target the issue of resuming educa-
tional and work activities. Consequently, our research focuses on the critical areas within
universities and colleges, taking into account that individuals in the latent phase can trans-
mit the infection. We enhance the traditional SEIR model by incorporating this aspect
and investigate the risk of campus-wide disease spread. To inform the development of epi-
demic prevention and control strategies in universities and colleges, we will also conduct a
comparative analysis of various management and control strategies.

2 Method
2.1 SEIR Model

The SEIR (Susceptible-Exposed-Infectious-Removed) model is an advancement over the
traditional SIR model by offering a partition of the population which consists of four distinct
compartments (Zare and Vasegh (2021)):
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Figure 1: The transformation relationships among four distinct compartments in the SEIR

model.

e Susceptible: This category includes individuals who are not infected with the disease
and, due to lacking immunity, are at risk of contracting the infection upon contact

with an infected person.

o Exposed: This category includes individuals who have been exposed to the infection
but have not yet exhibited any symptoms of the disease.

o Infectious: This category includes individuals who have been infected and are capable
of transmitting the disease to those who are susceptible.

e Removed: This category includes individuals who have either recovered from the
illness or have succumbed to it, and thus are no longer part of the infectious cycle.

Figure 1 showcases the transformation relationships among four distinct compartments

in the SEIR model.

Given S, E, I and R as the number of susceptible, exposed, infectious, and removed
people in the population, respectively, the number transformation relationships among four
distinct compartments over time obey the constraint N = S + EF 4+ I + R and ordinary

differential equations as follows:
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In this paper, the SEIR model is deepened with the help of representations from stacked

denoising autoencoder.

2.2 Stacked Denoising Autoencoder

Autoencoder (AE) networks are deep neural networks in unsupervised machine learning,
which obtain higher-level representations of input data in an encoding-decoding manner.
Typically, autoencoder networks need to keep output as same as input, i.e., recovering input.
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A: Adding noise

Figure 2: Denoising autoencoder.

Denoising Autoencoder (DAE) expands the function of autoencoder networks to the noise
cancellation via replacing the recovering objective with denoising objective. As shown in
Figure 2, DAE consists of an input layer, a hidden layer, and an output layer. The input
layer and the hidden layer make up the encoder part of DAE, while the hidden layer and the
output layer make up the decoder part of DAE. Before the input layer, noise is added into
the origin data via process A. And the objective of the output layer is still the origin data.
Consequently, DAE is tasked with learning to filter out the noise in order to reconstruct the
clean input data. This requirement encourages the encoder part to develop a more resilient
representation of the input dat, thereby enhancing its capacity to generalize beyond the
training data.

Given clean dataset X = x1, 9, -, z,, the input dataset after process A (adding noise)
is X = 41,49, - -, %p. The weight and bias of the encoder part are W) and by, respectively.
Similarly, the weight and bias of the decoder part are W@ and by, respectively. The
computation in the encoder part is:

h = o1(WiZ + by). (2)

where o7 is the activation function in the encoder part, and h is the representation in the
hidden layer. The computation in the decoder part is:

T = 02(W2h—|—b2). (3)

where o9 is the activation function in the decoder part, and  is the reconstructed clean
data in the output layer.

Stacked autoencoder combines multiple autoencoder networks to form a deeper network
via connecting each encoder part and then each decoder part. Its training process obeys
the rule of “from shallow to deep”. That is, first, training the shallow encoder part and the
shallow decoder part, then, training the deeper encoder part and the deeper decoder part.
This manner makes decoder and more general representations can be obtained.

In this paper, general representations from stacked denoising autoencoder are used to
predict the development of epidemic in the SEIR model.
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Figure 3: Epidemic propagation without implementing control strategies.

3 Experiments

A specific university was chosen for our study, and MATLAB was used to implement the
stacked denoising autoencoder and the enhanced SEIR model. That university consists of
35,000 undergraduates, 15,000 master’s students, 2,000 doctoral candidates, 1,500 interna-
tional students, and 5,000 staff members. The campus includes common areas that are
typically bustling with activity, such as lecture halls, dormitories, cafeterias, and auditori-
ums.

Without implementing any control strategies, the dining hall accommodates 500 indi-
viduals per mealtime, including individuals who are already infected. We start with an
initial count of 2 infected individuals. The epidemic propagation over a 120-day period is
shown in Figure 3. According to Figure 3, the infection peak occurred around the 25th day,
with the highest recorded number of infected individuals surpassing 200.

Control strategies include off-peak dining and social distancing to minimize gatherings,
wearing masks and keeping hand hygiene to reduce interpersonal propagations, and dis-
infection to further decrease the infection rate. These strategies can effectively halve the
daily interactions between infected and susceptible individuals, and reduce the infection
rate by one-third. The epidemic propagation over a 120-day period under control strategies
is shown in Figure 4. According to Figure 4, the impact of these control strategies is signif-
icant. The infection peak is delayed to around the 75th day, with the number of infected
individuals at the peak significantly reduced to about 80.

According to the comparison between Figure 1 and Figure 2, the efficacy of control mea-
sures in critical areas of universities and colleges can be found. In the absence of any control
measures, epidemic propagation is in an exponential-like manner. Once control measures
are implemented, there is a significant reduction in the frequency of interactions between
infected and those individuals, which leads to a decrease in the per-contact transmission
rate, effectively reducing the epidemic propagation. Consequently, the peak numbers of
infected individuals are reduced by 61%, demonstrating the substantial benefits of these
control strategies.
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Figure 4: Epidemic propagation with implementing control strategies.

4 Conclusion

Amidst the background of universities resumption under a framework of sustained epidemic
prevention and control, this study focuses on the potential risks of epidemic propagation
within pivotal campus settings such as dining halls, auditoriums, lecture buildings, and
dormitories. Drawing from an enhanced SEIR model tailored to these areas, strategies
for mitigating risks in these critical zones have been proposed. Nevertheless, because the
epidemic propagation is influenced by a multitude of variables, the precision of our method
remains unperfect. In the future, we plan to incorporate more sophisticated deep learning
techniques to enhance the accuracy of our forecasts.
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